Smirnov’s work on the two-dimensional Ising model

Hugo Duminil-Copin, Université de Genève
Recently much of the progress in understanding two-dimensional phenomena resulted from

- Conformal Field Theory (last 25 years)
- Schramm-Loewner Evolution (last 10 years)

There were very fruitful interactions between mathematics and physics. We will try to describe parts of the relations between these three subjects.

Plan:

1. Brief historic
2. Study of discrete models
3. Schramm-Loewner Evolution
The Square lattice Ising model

Each cell of a square lattice is either red or blue (corresponding respectively to $+$ or $-$). The probability of a configuration σ is

$$P_\beta(\sigma) = \frac{1}{Z_\beta} \exp \left(-\beta \sum_{x \sim y} \sigma(x)\sigma(y) \right)$$

where Z_β is the partition function of the model.
Brief historic (1): Onsager’s exact solution

- **1944 (Onsager)**: computation of the partition function (unrigorous)

Other approaches developed:

1. Kac, Ward, Potts, Dolbilin, Cimasoni: combinatorial approach
2. Kasteleyn, Fisher: dimer approach
3. Lieb, Baxter: transfer matrices approach

All these approaches deal with simple geometries (whole plane, torus, etc...). Derive analytic properties. Harder to get geometric ones (in particular dependence on boundary conditions).

Hugo Duminil-Copin, Université de Genève

Smirnov's work on the two-dimensional Ising model
Brief historic (1): Onsager’s exact solution

- **1944 (Onsager):** computation of the partition function (unrigorous)
- **1949 (Kaufman, Onsager):** computation made rigorous

Later (Yang, Wu, McCoy): use the computation to derive quantities of the model (such as certain critical exponents)

Other approaches developed:

1. **Kac, Ward, Potts, Dolbilin, Cimasoni:** combinatorial approach
2. **Kasteleyn, Fisher:** dimer approach
3. **Lieb, Baxter:** transfer matrices approach

All these approaches deal with simple geometries (whole plane, torus, etc...). Harder to get geometric ones (in particular dependence on boundary conditions).

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Brief historic (1): Onsager’s exact solution

- **1944** (*Onsager*): computation of the partition function (unrigorous)
- **1949** (*Kaufman, Onsager*): computation made rigorous
- **Later** (*Yang, Wu, McCoy*): use the computation to derive quantities of the model (such as certain critical exponents)
Brief historic (1): Onsager’s exact solution

- **1944** (*Onsager*): computation of the partition function (unrigorous)
- **1949** (*Kaufman, Onsager*): computation made rigorous
- **Later** (*Yang, Wu, McCoy*): use the computation to derive quantities of the model (such as certain critical exponents)

Other approaches developed:
- (1) *Kac, Ward, Potts, Dolbilin, Cimasoni*: combinatorial approach
- (2) *Kasteleyn, Fisher*: dimer approach
- (3) *Lieb, Baxter*: transfer matrices approach
Brief historic (1): Onsager’s exact solution

- **1944** (*Onsager*): computation of the partition function (unrigorous)
- **1949** (*Kaufman, Onsager*): computation made rigorous
- **Later** (*Yang, Wu, McCoy*): use the computation to derive quantities of the model (such as certain critical exponents)
- **Other approaches developed**:
 1. *Kac, Ward, Potts, Dolbilin, Cimasoni*: combinatorial approach
 2. *Kasteleyn, Fisher*: dimer approach
 3. *Lieb, Baxter*: transfer matrices approach

⚠️ All these approaches deal with simple geometries (whole plane, torus, etc...). Derive analytic properties. Harder to get geometric ones (in particular dependence into boundary conditions).
Brief historic (2): Renormalization Group

- 1951, Petermann-Stueckelberg

Perform a block-spin renormalization which corresponds to a rescaling: define an operator from the set of hamiltonians in itself.

Conclusion: At criticality, the scaling limit is described by a mass-less field theory. The critical point is universal and hence translational, scaling and rotational invariant.

We must believe in this picture (for instance for the problem of marginal 'operators').
Brief historic (2): Renormalization Group

- **1951**, Petermann-Stueckelberg

Perform a block-spin renormalization which corresponds to a rescaling: define an operator from the set of hamiltonians in itself.
Brief historic (2): Renormalization Group

- **1951**, *Petermann-Stueckelberg*

Perform a block-spin renormalization which corresponds to a rescaling: define an operator from the set of hamiltonians in itself.

Conclusion: At criticality, the scaling limit is described by a mass-less field theory. The critical point is universal and hence translational, scaling and rotational invariant.
Perform a block-spin renormalization which corresponds to a rescaling: define an operator from the set of hamiltonians in itself.

Conclusion: At criticality, the scaling limit is described by a mass-less field theory. The critical point is universal and hence translational, scaling and rotational invariant.

⚠️ We must believe in this picture (for instance for the problem of marginal 'operators').
Brief historic (3): Birth of 2D conformal field theory

Definition: Conformal transformations are preserving the angles, or in other words are **locally** translations $+$ rotation $+$ scaling.

💡 Since the fields are local, one can logically postulate the conformal invariance of the model.
Brief historic (3): Birth of 2D conformal field theory

Definition: Conformal transformations are preserving the angles, or in other words are **locally** translations + rotation + scaling.

💡 Since the fields are **local**, one can logically postulate the conformal invariance of the model.

⚠️ We must assume the RG is true. It does not address any boundary conditions issue.
Brief historic (4): 2D conformal field theory

- **1966**, *(Patashinkii-Pokrovskii, Kadanoff)* scale, rotation and translation invariance allow to calculate two-point correlations

- **1970**, *(Polyakov)*: Möbius invariance allows to calculate three-point correlations

- **1984**, *(Belavin, Polyakov, Zamolodchikov)* postulate full conformal invariance allows to compute much more things

- **1984**, *(Cardy)* work with boundary fields which leads to applications to lattice models.

- Highest weight of Virasoro's algebra, Quantum gravity, etc...

Smirnov's work on the two-dimensional Ising model
Brief historic (4): 2D conformal field theory

- **1966**, *(Patashinkii-Pokrovskii, Kadanoff)* scale, rotation and translation invariance allow to calculate two-point correlations
- **1970**, *(Polyakov)*: Mobiës invariance allows to calculate three-point correlations

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Brief historic (4): 2D conformal field theory

- **1966**, (Patashinkii-Pokrovskii, Kadanoff): scale, rotation and translation invariance allow to calculate two-point correlations

- **1970**, (Polyakov): Mobiüs invariance allows to calculate three-point correlations

- **1984**, (Belavin, Polyakov, Zamolodchikov): postulate full conformal invariance allows to compute much more things
Brief historic (4): 2D conformal field theory

- **1966**, (*Patashinkii-Pokrovskii, Kadanoff*) scale, rotation and translation invariance allow to calculate two-point correlations.
- **1970**, (*Polyakov*): Mobiüs invariance allows to calculate three-point correlations.
- **1984**, (*Belavin, Polyakov, Zamolodchikov*) postulate full conformal invariance allows to compute much more things.
- **1984**, (*Cardy*) work with boundary fields which leads to applications to lattice models.
Brief historic (4): 2D conformal field theory

- **1966**, *(Patashinkii-Pokrovskii, Kadanoff)*: Scale, rotation and translation invariance allow to calculate two-point correlations.
- **1970**, *(Polyakov)*: Möbius invariance allows to calculate three-point correlations.
- **1984**, *(Belavin, Polyakov, Zamolodchikov)*: Postulate full conformal invariance allows to compute much more things.
- **1984**, *(Cardy)*: Work with boundary fields which leads to applications to lattice models.
- Highest weight of Virasoro’s algebra, Quantum gravity, etc...
Brief historic (5): summary

- We can study the discrete Ising model directly (exactly solvable model)
Brief historic (5): summary

- We can study the discrete Ising model directly (exactly solvable model)
- we can study its continuum limit at criticality (RG and CFT)
Brief historic (5): summary

- We can study the discrete Ising model directly (exactly solvable model)
- we can study its continuum limit at criticality (RG and CFT)

Brief historic (6): Geometric and analytic approach

- 1999 (Schramm) Schramm-Loewner Evolution, a geometric description of the scaling limits at criticality
Brief historic (5): summary

- We can study the discrete Ising model directly (exactly solvable model)
- we can study its continuum limit at criticality (RG and CFT)

Brief historic (6): Geometric and analytic approach

- 1999 (Schramm) Schramm-Loewner Evolution, a geometric description of the scaling limits at criticality
- Recent years (Smirnov) Discrete analyticity: a way to rigorously establish existence and conformal invariance of scaling limits.
DONE

- Brief historic
Brief historic

The Schramm-Loewner Evolution
Discrete observables and lattice models
What is next
Schramm-Loewner Evolution (pre-history)

Event 1 (1994): *(Langlands, Pouilot, Saint-Aubin)* check the existence of the limit, the universality and the conformal invariance of crossing probabilities for percolation.

Very widely read

Event 2: *(Cardy)* crossing formula for percolation:

\[
\lim_{\delta \to 0} P_\delta (C(R)) = \frac{\Gamma \left(\frac{2}{3} \right)}{\Gamma \left(\frac{4}{3} \right) \Gamma \left(\frac{1}{3} \right)} m^{\frac{1}{3}} \ 2F_1 \left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3}, m \right),
\]

where \(m \) is the conformal radius of the rectangle.

Easier version by Carleson, proved by Smirnov (2001)
(Schramm) Look at interfaces in models of statistical physics.
(Schramm) Look at interfaces in models of statistical physics.

Model these interfaces at the scaling limit by a random continuous curve, called SLE.
Schramm-Loewner Evolution (pre-history)

(Schramm) Look at interfaces in models of statistical physics.

Model these interfaces at the scaling limit by a random continuous curve, called SLE.

It allows him to deduce (among other things) Cardy’s formula, conditionally to the fact that the discrete interface indeed converges to SLE.
Schramm-Loewner Evolution (definition Loewner chain)

Consider a simply connected domain D with two points on the boundary (for instance think of $(\mathbb{H}, 0, \infty)$) and a growing curve from 0 to ∞.

$(Loewner 1920)$ Growing curves can be coded by real functions.
Schramm-Loewner Evolution (definition Loewner chain)

- Consider a simply connected domain \mathcal{D} with two points on the boundary (for instance think of $(\mathbb{H}, 0, \infty)$) and a growing curve from 0 to ∞.

 \[(\text{Loewner 1920})\] Growing curves can be coded by real functions.

\[g : H \setminus \gamma \to H \quad \infty \]
\[z \mapsto z + \frac{C}{z} + O(1/z^2) \]

Moreover for every $z \in H$, up to the first time at which z is swallowed by the curve, we have:

\[\partial_t g_t(z) = 2g_t(z) - W_t. \]

The process W_t is called the driving process.
Schramm-Loewner Evolution (definition Loewner chain)

Consider a simply connected domain \mathcal{D} with two points on the boundary (for instance think of $(\mathbb{H}, 0, \infty)$) and a growing curve from 0 to ∞.

(Loewner 1920) Growing curves can be coded by real functions.

\[g_t : H \setminus \gamma[0, t] \rightarrow H \]
\[z \mapsto z + \frac{2t}{z} + O(1/z^2) \]

Moreover for every $z \in H$, up to the first time at which z is swallowed by the curve, we have:

\[\partial_t g_t(z) = 2g_t(z) - W_t(z) \]

The process W_t is called the driving process.

Hugo Duminil-Copin, Université de Genève
Schramm-Loewner Evolution (definition Loewner chain)

Consider a simply connected domain \mathcal{D} with two points on the boundary (for instance think of $(\mathbb{H}, 0, \infty)$) and a growing curve from 0 to ∞.

(Loewner 1920) Growing curves can be coded by real functions.

Moreover for every $z \in \mathbb{H}$, up to the first time at which z is swallowed by the curve, we have:

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}.$$

The process W_t is called the driving process.
Observation 2: (domain Markov property) Conditionally on the start of the curve, the remaining curve is an SLE from the tip to ∞ in the slit domain.
Observation 2: (domain Markov property) Conditionally on the start of the curve, the remaining curve is an SLE from the tip to ∞ in the slit domain.

Observation 2: curves must be conformally invariant:

\[
\Phi(a) \rightarrow \Phi(b) \quad \Phi(D) \rightarrow \Phi(\gamma) \quad \Phi(\gamma) \rightarrow \Phi'(\gamma)
\]

With these two properties, the driving process must have independent increments. Scale invariance implies that it is a Brownian motion.

The SLE(κ) is the (random) Loewner chain generated by the $\sqrt{\kappa}B_t$ (B_t is a standard Brownian motion).

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Schramm-Loewner Evolution (definition Schramm-Loewner Evolution)

Observation 2: (domain Markov property) Conditionally on the start of the curve, the remaining curve is an SLE from the tip to ∞ in the slit domain.

Observation 2: curves must be conformally invariant:

\[
\Phi(a) \rightarrow \Phi(b) \\
\Phi(\gamma) \rightarrow \Phi'(\gamma) \\
\Phi(D) \rightarrow \Phi'(D)
\]

With these two properties, the driving process must have independent increments. Scale invariance implies that it is a Brownian motion.
Schramm-Loewner Evolution (definition Schramm-Loewner Evolution)

Observation 2: (domain Markov property) Conditionally on the start of the curve, the remaining curve is an SLE from the tip to ∞ in the slit domain.

Observation 2: curves must be conformally invariant:

With these two properties, the driving process must have independent increments. Scale invariance implies that it is a **Brownian motion**. The SLE(κ) is the (random) Loewner chain generated by the $\sqrt{\kappa}B_t$ (B_t is a standard Brownian motion).
Schramm-Loewner Evolution (properties of SLE itself)

A fractal curve:
- Simple for \(\kappa \leq 4 \)
- Self-touching for \(\kappa \in (4, 8) \)
- Space filling for \(\kappa \geq 8 \) (Rohde, Schramm)

Hausdorff dimension \(\dim_{Hausdorff}(\text{SLE}(\kappa)) = (1 + \kappa) / 8 \) (Beffara)

Computation of critical exponents (like intersection exponents).

Duality properties between \(\kappa \) and \(16/\kappa \) (Zhan, Dubédat).

Allows to construct more general processes, such as CLEs (Schramm, Sheffield, Werner).

Smirnov’s work on the two-dimensional Ising model.
Schramm-Loewner Evolution (properties of SLE itself)

- fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
Schramm-Loewner Evolution (properties of SLE itself)

- fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
Schramm-Loewner Evolution (properties of SLE itself)

- Fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
Schramm-Loewner Evolution (properties of SLE itself)

- fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
Schramm-Loewner Evolution (properties of SLE itself)

- fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
- $\text{dim}_{\text{Hausdorff}}(SLE(\kappa)) = \left(1 + \frac{\kappa}{8}\right) \land 2$ (Beffara)
Schramm-Loewner Evolution (properties of SLE itself)

- fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
- $\dim_{\text{Hausdorff}}(\text{SLE}(\kappa)) = \left(1 + \frac{\kappa}{8}\right) \wedge 2$ (Beffara)
- computation of critical exponents (like intersection exponents).
Schramm-Loewner Evolution (properties of SLE itself)

- fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
- $\dim_{\text{Hausdorff}}(\text{SLE}(\kappa)) = \left(1 + \frac{\kappa}{8}\right) \land 2$ (Beffara)
- computation of critical exponents (like intersection exponents).
- duality properties between κ and $16/\kappa$ (Zhan, Dubédat).
Schramm-Loewner Evolution (properties of SLE itself)

- fractal curve: simple for $\kappa \leq 4$, self-touching for $\kappa \in (4, 8)$ and space filling for $\kappa \geq 8$ (Rohde, Schramm)
- $\dim_{\text{Hausdorff}}(\text{SLE}(\kappa)) = \left(1 + \frac{\kappa}{8}\right) \wedge 2$ (Beffara)
- computation of critical exponents (like intersection exponents).
- duality properties between κ and $16/\kappa$ (Zhan, Dubédat).
- allows to construct more general processes, such as CLEs (Schramm, Sheffield, Werner).
Schramm-Loewner Evolution (connection with CFT)

$\kappa = 2$
$\kappa = 3$
$\kappa = 4$
$\kappa = 6$
$\kappa = 8$

$\kappa = 8/3$

loop erased Ising
Dimers
Level lines of GFF
Percolation
UST
SAW

Construction of a highest weight representation of Virasoro’s algebra
(Friedrich, Werner)

Link between SLE martingales and CFTs
(Bauer, Bernard)

Gaussian free field

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Schramm-Loewner Evolution (connection with CFT)

- Connection with discrete models: computation of critical exponents *(Lawler, Schramm, Werner)*

\[
\begin{align*}
\kappa &= 2 \\
\kappa &= 3 \\
\kappa &= 4 \\
\kappa &= 6 \\
\kappa &= 8 \\
\kappa &= 8/3
\end{align*}
\]

- loop erased Ising Dimers Levels lines of GFF Percolation UST

Construction of a highest weight representation of Virasoro’s algebra (Friedrich, Werner) for boundary CFT

Link between SLE martingales and CFTs (Bauer, Bernard)

Gaussian free field

Smirnov’s work on the two-dimensional Ising model
Schramm-Loewner Evolution (connection with CFT)

- Connection with discrete models: computation of critical exponents *(Lawler, Schramm, Werner)*

 $\kappa = 2, 3, 4, 6, 8, 8/3$

 - loop erased
 - SAW
 - Ising
 - Dimers
 - Level lines of GFF
 - Percolation
 - UST

- Construction of a highest weight representation of Virasoro’s algebra *(Friedrich, Werner)* for boundary CFT
Schramm-Loewner Evolution (connection with CFT)

- Connection with discrete models: computation of critical exponents (Lawler, Schramm, Werner)
 \[\kappa = \frac{8}{3}, \kappa = 2, \kappa = 3, \kappa = 4, \kappa = 6, \kappa = 8 \]

- Construction of a highest weight representation of Virasoro’s algebra (Friedrich, Werner) for boundary CFT

- Link between SLE martingales and CFTs (Bauer, Bernard)

Hugo Duminil-Copin, Université de Genève
Smirnov’s work on the two-dimensional Ising model
Schramm-Loewner Evolution (connection with CFT)

- Connection with discrete models: computation of critical exponents (*Lawler, Schramm, Werner*)
 - \(\kappa = 2 \)
 - \(\kappa = 3 \)
 - \(\kappa = 4 \)
 - \(\kappa = 6 \)
 - \(\kappa = 8 \)
 - \(\kappa = 8/3 \)

- Loop erased
- Ising
- SAW
- Dimers
- Level lines of GFF
- Percolation
- UST

- Construction of a highest weight representation of Virasoro’s algebra (*Friedrich, Werner*) for boundary CFT
- Link between SLE martingales and CFTs (*Bauer, Bernard*)
- Gaussian free field

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Brief historic

The Schramm-Loewner Evolution
Brief historic

The Schramm-Loewner Evolution

TO DO

Discrete observables and lattice models

What is next
Discrete observables (General philosophy)

Consider a family of interfaces between two points a and b in (discrete approximations with meshsize δ of) a fixed domain Ω.
Discrete observables (General philosophy)

- Consider a family of interfaces between two points a and b in (discrete approximations with meshsize δ of) a fixed domain Ω.
- **Assume** we know that the family of curves is precompact. In order to prove that the family of curves actually converges when $\delta \to 0$, it is sufficient to identify a unique possible limit.

Hugo Duminil-Copin, Université de Genève
Consider a family of interfaces between two points a and b in a fixed domain Ω. Assume we know that the family of curves is precompact. In order to prove that the family of curves actually converges when $\delta \to 0$, it is sufficient to identify a unique possible limit.

To identify the possible curve, one needs explicit martingales...
Discrete observables (General philosophy)

- Consider a family of interfaces between two points a and b in (discrete approximations with meshsize δ of) a fixed domain Ω.

- **Assume** we know that the family of curves is precompact. In order to prove that the family of curves actually converges when $\delta \to 0$, it is sufficient to identify a unique possible limit.

To identify the possible curve, one needs explicit martingales...

(1) These martingales should be **observables** of the lattice model (crossing probabilities, magnetization, etc)...
(2) We can compute them because they are discrete holomorphic and they satisfy some fixed boundary problem.
(3) Hence, they converge to the continuum analogue of the problem.

Hugo Duminil-Copin, Université de Genève
Smirnov’s work on the two-dimensional Ising model
Discrete observables (The case of the Ising model on the triangular lattice)

Consider the hexagonal lattice for a second and define the high-temperature expansion of the Ising model.
Discrete observables (The case of the Ising model on the triangular lattice)

Consider the hexagonal lattice for a second and define the high-temperature expansion of the Ising model.

For a simply-connected domain Ω and a discrete approximation of it, let z be on the boundary. Define the fermionic operator

$$F_{\Omega, \delta, x}(a, z) = \sum_{\omega \text{ with a curve } \gamma \text{ from } a \text{ to } z} e^{-i \frac{1}{2} W_{\gamma}(a, z)} x^{\#\text{edges}}.$$
Discrete observables (The case of the Ising model on the triangular lattice)

Consider the hexagonal lattice for a second and define the high-temperature expansion of the Ising model.

For a simply-connected domain Ω and a discrete approximation of it, let z be on the boundary. Define the fermionic operator

$$F_{\Omega,\delta,x}(a,z) = \sum_{\omega \text{ with a curve } \gamma \text{ from } a \text{ to } z} e^{-i\frac{1}{2} W_{\gamma}(a,z)} x^{\# \text{edges}}.$$

The integral along any discrete contour equals 0.
Discrete observables (The case of the Ising model on the triangular lattice)

Consider the hexagonal lattice for a second and define the high-temperature expansion of the Ising model.

For a simply-connected domain Ω and a discrete approximation of it, let z be on the boundary. Define the fermionic operator

$$F_{\Omega,\delta,x}(a, z) = \sum_{\omega \text{ with a curve } \gamma \text{ from } a \text{ to } z} e^{-i\frac{1}{2}W_\gamma(a, z)} \chi \text{#edges}.$$

The integral along any discrete contour equals 0.

If $x = x_c$, the function $z \mapsto F_{\Omega,\delta,x_c}(a, z)$ is a discrete Green function with Riemann-Hilbert boundary-value problem.
Discrete observables (The case of the Ising model on the triangular lattice)

Let Ω be a simply connected domain and a, b on the boundary.

Fact 1:
For z inside the domain,\[
\lim_{\delta \to 0} F_{\Omega, \delta, x_c}(a, z) = \sqrt{K'_{\Omega}(a, z)} \cdot K'_{\Omega}(a, b).
\]

Fact 2:
The quantity $F_{\Omega, \gamma_t, \delta, x_c}(\gamma_t, z) = F_{\Omega, \gamma_t, \delta, x_c}(\gamma_t, b)$ is a martingale (conserved quantity) of the discrete curve from a to b.

When plugging that for each z, $\sqrt{K'_{\Omega}(a, z)} \cdot K'_{\Omega}(a, b)$ is a conserved quantity of the limiting curve, we deduce that the only possible limit is SLE(3)!
Discrete observables (The case of the Ising model on the triangular lattice)

Let Ω be a simply connected domain and a, b on the boundary,

Fact 1: For z inside the domain,

$$
\lim_{\delta \to 0} \frac{F_{\Omega, \delta, x_c}(a, z)}{F_{\Omega, \delta, x_c}(a, b)} = \sqrt{\frac{K'_\Omega(a, z)}{K'_\Omega(a, b)}}.
$$

When plugging that for each z, $\sqrt{K'_\Omega(a, z)}$ is a conserved quantity of the limiting curve, we deduce that the only possible limit is SLE(3)!
Discrete observables (The case of the Ising model on the triangular lattice)

Let Ω be a simply connected domain and a, b on the boundary,

Fact 1: For z inside the domain,

$$
\lim_{{\delta \to 0}} \frac{F_{\Omega, \delta, x_c}(a, z)}{F_{\Omega, \delta, x_c}(a, b)} = \sqrt{\frac{K'_{\Omega}(a, z)}{K'_{\Omega}(a, b)}}.
$$

Fact 2: The quantity

$$
\frac{F_{\Omega \setminus \gamma_t, \delta, x_c}(\gamma_t, z)}{F_{\Omega \setminus \gamma_t, \delta, x_c}(\gamma_t, b)}
$$

is a martingale (conserved quantity) of the discrete curve from a to b.

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Discrete observables (The case of the Ising model on the triangular lattice)

Let Ω be a simply connected domain and a, b on the boundary,

Fact 1: For z inside the domain,

$$
\lim_{\delta \to 0} \frac{F_{\Omega, \delta, x_c}(a, z)}{F_{\Omega, \delta, x_c}(a, b)} = \sqrt{\frac{K'_{\Omega}(a, z)}{K'_{\Omega}(a, b)}}.
$$

Fact 2: The quantity

$$
\frac{F_{\Omega \setminus \gamma_t, \delta, x_c}(\gamma_t, z)}{F_{\Omega \setminus \gamma_t, \delta, x_c}(\gamma_t, b)}
$$

is a martingale (conserved quantity) of the discrete curve from a to b.

💡 When plugging that for each z, $\sqrt{\frac{K'_{\Omega \setminus \gamma_t}(a, z)}{K'_{\Omega \setminus \gamma_t}(a, b)}}$ is a conserved quantity of the limiting curve, we deduce that the only possible limit is SLE(3)!
Discrete observables (Implications)

convergence to SLE(3) (Chelkak, Smirnov) which leads to exponents understanding of the geometric properties (D.-C., Hongler and Nolin), leading to mixing estimates for the Glauber dynamics (Sly, Lubetzky)

construction of the energy density field (Hongler, Smirnov):

$$\langle \sigma(x) \sigma(y) \rangle_{\Omega, \epsilon, \text{free}} = \sqrt{2} - \frac{1}{\pi \rho} \Omega(x) \epsilon + O(\epsilon^2).$$

Smirnov's work on the two-dimensional Ising model
Discrete observables (Implications)

- convergence to SLE(3) (Chelkak, Smirnov) which leads to exponents

\[\langle \sigma(x) \sigma(y) \rangle_{\Omega_\epsilon, \text{free}} = \sqrt{2} - \frac{1}{\pi \rho_{\Omega}(x)} + O(\epsilon^2). \]
Discrete observables (Implications)

- convergence to SLE(3) (Chelkak, Smirnov) which leads to exponents
- understanding of the geometric properties (D.-C., Hongler and Nolin), leading to mixing estimates for the Glauber dynamics (Sly, Lubetzky)

\[
\langle \sigma(x) \sigma(y) \rangle_{\Omega, \varepsilon, \text{free}} = \sqrt{2} - \frac{1}{\pi \rho_{\Omega}(x)} + O(\varepsilon^2).
\]
Discrete observables (Implications)

- convergence to SLE(3) (Chelkak, Smirnov) which leads to exponents
- understanding of the geometric properties (D.-C., Hongler and Nolin), leading to mixing estimates for the Glauber dynamics (Sly, Lubetzky)
- construction of the energy density field (Hongler, Smirnov):

\[
\langle \sigma(x)\sigma(y) \rangle_{\Omega_\varepsilon,\text{free}} = \frac{\sqrt{2}}{2} - \frac{1}{\pi} \rho_{\Omega}(x)\varepsilon + O(\varepsilon^2).
\]
Discrete observables (Other $O(n)$-models)

The $O(n)$ model is a model on **closed loops** lying on a finite subgraph of the hexagonal lattice: the partition function equals

$$Z_{x,n,G} = \sum x^{\text{# edges}} n^{\text{# loops}}.$$
Discrete observables (Other $O(n)$-models)

The $O(n)$ model is a model on closed loops lying on a finite subgraph of the hexagonal lattice: the partition function equals

$$Z_{x,n,G} = \sum x^{\#\text{ edges}} n^{\#\text{ loops}}.$$

$$F(a, z, x, \sigma) := \sum_{\omega \text{ with a curve } \gamma \text{ from } a \text{ to } z} e^{-i\sigma W_\gamma(a,z)} x^{\#\text{edges}} n^{\#\text{loops}}$$

where $2 \cos\left(\frac{4(1/2+\sigma)\pi}{3}\right) = -n$.

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Discrete observables (Other $O(n)$-models)

The $O(n)$ model is a model on closed loops lying on a finite subgraph of the hexagonal lattice: the partition function equals

$$Z_{x,n,G} = \sum x^{\text{# edges}} n^{\text{# loops}}.$$

$$F(a, z, x, \sigma) := \sum_{\omega \text{ with a curve } \gamma \text{ from } a \text{ to } z} e^{-i\sigma W_\gamma(a, z)} x^{\text{#edges}} n^{\text{#loops}}$$

where $2 \cos\left(\frac{4(1/2+\sigma)\pi}{3}\right) = -n$.

Hugo Duminil-Copin, Université de Genève

Smirnov’s work on the two-dimensional Ising model
Brief historic
The Schramm-Loewner Evolution
Discrete observables and lattice models
DONE

- Brief historic
- The Schramm-Loewner Evolution
- Discrete observables and lattice models

TO DO

- What is next
Prove conformal invariance of other lattice models
- Prove conformal invariance of other lattice models
- Prove universality for the Ising model
- Prove conformal invariance of other lattice models
- Prove universality for the Ising model
- Comprehend links between SLE (or CLE) and CFT deeper
- Prove conformal invariance of other lattice models
- Prove universality for the Ising model
- Comprehend links between SLE (or CLE) and CFT deeper
- Construct CFTs from branching SLE
Prove conformal invariance of other lattice models

Prove universality for the Ising model

Comprehend links between SLE (or CLE) and CFT deeper

Construct CFTs from branching SLE

Relate random planar graphs to Liouville Quantum Gravity via SLE.
Thank you