GR Assignments 01

1. Coordinate Transformations and Metrics

Under a cooordinate transformation $\xi^{A}=\xi^{A}\left(x^{\mu}\right)$, the Minkowski metric $\eta_{A B}$ transforms to a new metric $g_{\mu \nu}$ in such a way that proper distances are invariant. In other words, the line element $d s^{2}=\eta_{A B} d \xi^{A} d \xi^{B}$ is invariant,

$$
\begin{equation*}
\eta_{A B} d \xi^{A} d \xi^{B}=g_{\mu \nu} d x^{\mu} d x^{\nu} \tag{1}
\end{equation*}
$$

(a) Show that this implies that $g_{\mu \nu}$ is related to $\eta_{A B}$ by

$$
\begin{equation*}
g_{\mu \nu}(x)=\frac{\partial \xi^{A}}{\partial x^{\mu}} \frac{\partial \xi^{B}}{\partial x^{\nu}} \eta_{A B} \tag{2}
\end{equation*}
$$

(b) Determine the Minkowski metric $d s^{2}=-d t^{2}+d x^{2}$ in Rindler coordinates $(T, X), t=X \sinh T, x=X \cosh T$.
(c) Show that the inverse metric $g^{\mu \nu}$, i.e. $g^{\mu \nu} g_{\nu \lambda}=\delta_{\lambda}^{\mu}$ is given by

$$
\begin{equation*}
g^{\mu \nu}=\eta^{A B} \frac{\partial x^{\mu}}{\partial \xi^{A}} \frac{\partial x^{\nu}}{\partial \xi^{B}} \tag{3}
\end{equation*}
$$

2. The Free Particle in Arbitrary Coordinates

Transforming from inertial (Minkowski) coordinates ξ^{A} to arbitrary coordinates x^{μ}, the free-particle equation of motion $d^{2} \xi^{A} / d \tau^{2}=0$ becomes

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\nu \lambda}^{\mu} \frac{d x^{\nu}}{d \tau} \frac{d x^{\lambda}}{d \tau}=0 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{\nu \lambda}^{\mu}=\frac{\partial x^{\mu}}{\partial \xi^{A}} \frac{\partial^{2} \xi^{A}}{\partial x^{\nu} \partial x^{\lambda}} \tag{5}
\end{equation*}
$$

Show that this pseudo-force term Γ arising in the x^{μ} coordinate system is related to the metric $g_{\mu \nu}$ (eq. (2)) in these coordinates by

$$
\begin{align*}
\Gamma_{\nu \lambda}^{\mu} & =g^{\mu \rho} \Gamma_{\rho \nu \lambda} \\
\Gamma_{\mu \nu \lambda} & =\frac{1}{2}\left(g_{\mu \nu, \lambda}+g_{\mu \lambda, \nu}-g_{\nu \lambda, \mu}\right) \tag{6}
\end{align*}
$$

where $g^{\mu \nu}$ is the inverse metric and $g_{\mu \nu, \lambda}$ is short-hand for the partial derivative $\left(\partial g_{\mu \nu} / \partial x^{\lambda}\right)$.

3. Christoffel Symbols and Coordinate Transformations

The Christoffel symbols $\Gamma_{\mu \nu \lambda}$ and $\Gamma_{\nu \lambda}^{\mu}$ associated to a metric $g_{\mu \nu}$ are defined as in Exercise 2, eq. (6) (but now for an arbitrary metric). Manipulating and calculating these Christoffel symbols is one of the less pleasant tasks in GR - but it has got to be done. It is also a good warm-up exercise for learning how to manipulate (correctly!) objects with multiple indices, summations etc.
(a) Use the tensorial behaviour of the metric under a coordinate transformation $x^{\mu} \rightarrow y^{\mu^{\prime}}\left(x^{\mu}\right)$ to show that the Christoffel symbols transform as

$$
\begin{equation*}
\Gamma_{\nu^{\prime} \lambda^{\prime}}^{\mu^{\prime}}=\Gamma_{\nu \lambda}^{\mu} \frac{\partial y^{\mu^{\prime}}}{\partial x^{\mu}} \frac{\partial x^{\nu}}{\partial y^{\nu^{\prime}}} \frac{\partial x^{\lambda}}{\partial y^{\lambda^{\prime}}}+\frac{\partial y^{\mu^{\prime}}}{\partial x^{\mu}} \frac{\partial^{2} x^{\mu}}{\partial y^{\nu^{\prime}} \partial y^{\lambda^{\prime}}} . \tag{7}
\end{equation*}
$$

(b) Show that, as a consequence of (7), $\ddot{x}^{\mu}+\Gamma_{\nu \lambda}^{\mu} \dot{x}^{\nu} \dot{x}^{\lambda}$ transforms as a vector under coordinate transformations, i.e. that one has

$$
\begin{equation*}
\ddot{y}^{\mu^{\prime}}+\Gamma_{\nu^{\prime} \lambda^{\prime}}^{\mu^{\prime}} \cdot \dot{y}^{\nu^{\prime}} \dot{y}^{\lambda^{\prime}}=\frac{\partial y^{\mu^{\prime}}}{\partial x^{\mu}}\left(\ddot{x}^{\mu}+\Gamma_{\nu \lambda}^{\mu} \dot{x}^{\nu} \dot{x}^{\lambda}\right) \tag{8}
\end{equation*}
$$

Hint: you may have to use an identity which follows from differentiating

$$
\begin{equation*}
\left(\partial x^{\rho} / \partial y^{\mu^{\prime}}\right)\left(\partial y^{\mu^{\prime}} / \partial x^{\lambda}\right)=\delta_{\lambda}^{\rho} . \tag{9}
\end{equation*}
$$

Remark: If you don't want to do 3 a and 3 b , then just do 3 b , using the result (7) of 3a. First of all, it is easier (shorter), and secondly it is more rewarding / satisfactory to cancel non-tensorial terms rather than generate them ...

