GR Assignments 04

1. Stationary and Freely Falling Schwarzschild Observers

(a) Consider a stationary observer (sitting at fixed values of $(r>2 m, \theta, \phi)$) in the Schwarzschild geometry

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 m}{r}\right) d t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) . \tag{1}
\end{equation*}
$$

Determine his worldline 4 -velocity $u^{\alpha}=d x^{\alpha} / d \tau$ and the acceleration $a^{\alpha}=$ $\nabla_{\tau} u^{\alpha} \equiv u^{\beta} \nabla_{\beta} u^{\alpha}$ and calculate $g_{\alpha \beta} a^{\alpha} a^{\beta}$. What happens as $r \rightarrow \infty$ and $r \rightarrow 2 m$?
(b) Consider a freely (and radially) falling observer in the Schwarzschild geometry, initially at rest at radius $r(\tau=0) \equiv R>2 m$. Show that the proper time it would (formally) take him to reach $r=0$ is (up to factors of c) given by

$$
\begin{equation*}
\tau=\pi\left(\frac{R^{3}}{8 m}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

Estimate this for R the radius of the sun ($R \sim 7 \times 10^{10} \mathrm{~cm}$) and $2 m$ its Schwarzschild radius ($2 m \sim 3 \times 10^{5} \mathrm{~cm}$), restoring the correct factors of c, and show that this is of the order of an hour.
Remark: this can be interpreted as an estimate for the time of complete collapse of a star under its own gravitational attraction.

2. Kruskal Coordinates for the Schwarzschild Space-Time

To get to a completely non-singular and complete form of the Schwarzschild metric introduce the so-called Kruskal coordinates

$$
\begin{align*}
X & =\frac{1}{2}\left(\mathrm{e}^{\left(t+r^{*}\right) / 4 m}+\mathrm{e}^{-\left(t-r^{*}\right) / 4 m}\right) \\
T & =\frac{1}{2}\left(\mathrm{e}^{\left(t+r^{*}\right) / 4 m}-\mathrm{e}^{-\left(t-r^{*}\right) / 4 m}\right) \tag{3}
\end{align*}
$$

where the tortoise coordinate r^{*} is defined by $r^{*}=r+2 m \log (r / 2 m-1)$.
Show that in terms of these coordinates the metric is

$$
\begin{equation*}
d s^{2}=\frac{32 m^{3}}{r} \mathrm{e}^{-r / 2 m}\left(-d T^{2}+d X^{2}\right)+r^{2} d \Omega^{2} \tag{4}
\end{equation*}
$$

where $r=r(T, X)$ is implicitly given by

$$
\begin{equation*}
X^{2}-T^{2}=(r / 2 m-1) \mathrm{e}^{r / 2 m} \tag{5}
\end{equation*}
$$

