GR ASSIGNMENTS 05

1. TENSOR ANALYSIS II: THE COVARIANT DERIVATIVE

The covariant derivative V , is the tensorial generalisation of the partial derivative
Oy, i.e. it is such that the covariant derivative of a tensor is again a tensor. More
precisely, the covariant derivative of a (p, g)-tensor is then a (p,q + 1)-tensor be-
cause it has one more lower (covariant) index. Since the partial derivative 9, f of a
scalar f (a (0,0)-tensor) is a covector (a (0, 1)-tensor), one sets V,, f = 0, f. How-
ever, as we have seen, the partial derivative 0,V of a vector V* (a (1,0)-tensor)
is not a (1,1)-tensor. This can be rectified by defining the covariant derivative of

a vector to be

Vu VY =0,V + TV, V. (1)

It can be checked that this is indeed a tensor, the non-tensorial nature of the partial
derivative of a vector cancelling exactly against that of the Christoffel symbols.
A smilar story holds for covectors: the partial derivative 9,4, of a (0, 1)-tensor
(covector) is not a tensor. This can be cured in the same way as for vectors, and

one can check that
VA, = 0,A, —T), Ay (2)

is indeed a (0, 2)-tensor. The action of V, on vectors and covectors can be ex-
tended to arbitrary (p, ¢)-tensors. For instance, for a (0,2)-tensor B,,, one has

VaBuy = OzBuw — Fp,\quv - FPAVBW : (3)

(a) An alternative way to arrive at (2) is to demand the Leibniz rule for the
covariant derivative of a product of tensors: deduce (2) from (1) using the
fact that A, V" is a scalar for any vector V”, so that V (A, V") = 0,(A,V")
and using the Leibniz rule for 9, (i.e. 9,(A, V") = (0,A,)VY + A,0,V") and
V.

(b) Check that, even though 0, A, is not a tensor, the curl (or rotation) 0,A, —
0, A, is (i.e. transforms as) a tensor. Then show that the covariant curl of a

covector is equal to its ordinary curl,

VA, — VA, = 0,A, — 0,4, | (4)



This provides an alternative argument for the fact that 9,4, — 0, A, is a

tensor.

(c) Show that (3) implies that the covariant derivative of the metric is zero,

Vg = 0.

2. TENSOR ANALYSIS III: THE COVARIANT DIVERGENCE AND THE LAPLACIAN

An extremely useful identity for the variation (in particular, the derivative) of the

determinant g := |det g,,, | of the metric is

9 69 = " dg 9 '0Ng = ¢" g - (5)

One proof of this result, based on the explicit expansion of a determinant in terms
of minors, g = Y, (—=1)*™gu,|m,.| is described in the lecture notes (section
4.5). Another easy proof can be deduced from the fundamental matrix identity
det M = exptrlog M.

(a) Use (5) to show that the contracted Christoffel symbol I"LA (summation over

the index p) can be calculated by the simple formula
F!L)\ 2971/28)\g+1/2 ) (6)

(b) Show that this implies that the covariant divergence of a vector (current) J#

and an anti-symmetric tensor F* = —F"* can be written as
V' = g7 20,(g' 7T VY = g7 Pou(g P F) L (7)

(c¢) Use the formula
0d = 971/28M(g1/2g’“’3y<1>) (8)

to determine the Laplacian in R? in spherical coordinates (r, 6, ¢).



