
GR Assignments 05

1. Tensor Analysis II: the Covariant Derivative

The covariant derivative ∇µ is the tensorial generalisation of the partial derivative

∂µ, i.e. it is such that the covariant derivative of a tensor is again a tensor. More

precisely, the covariant derivative of a (p, q)-tensor is then a (p, q + 1)-tensor be-

cause it has one more lower (covariant) index. Since the partial derivative ∂µf of a

scalar f (a (0, 0)-tensor) is a covector (a (0, 1)-tensor), one sets ∇µf = ∂µf . How-

ever, as we have seen, the partial derivative ∂µV
ν of a vector V ν (a (1, 0)-tensor)

is not a (1, 1)-tensor. This can be rectified by defining the covariant derivative of

a vector to be

∇µV
ν = ∂µV

ν + Γν
µλV

λ . (1)

It can be checked that this is indeed a tensor, the non-tensorial nature of the partial

derivative of a vector cancelling exactly against that of the Christoffel symbols.

A smilar story holds for covectors: the partial derivative ∂µAν of a (0, 1)-tensor

(covector) is not a tensor. This can be cured in the same way as for vectors, and

one can check that

∇µAν = ∂µAν − Γλ
µνAλ (2)

is indeed a (0, 2)-tensor. The action of ∇µ on vectors and covectors can be ex-

tended to arbitrary (p, q)-tensors. For instance, for a (0, 2)-tensor Bµν one has

∇λBµν = ∂λBµν − Γρ
λµBρν − Γρ

λνBµρ . (3)

(a) An alternative way to arrive at (2) is to demand the Leibniz rule for the

covariant derivative of a product of tensors: deduce (2) from (1) using the

fact that AνV
ν is a scalar for any vector V ν , so that ∇µ(AνV

ν) = ∂µ(AνV
ν)

and using the Leibniz rule for ∂µ (i.e. ∂µ(AνV
ν) = (∂µAν)V

ν +Aν∂µV
ν) and

∇µ.

(b) Check that, even though ∂µAν is not a tensor, the curl (or rotation) ∂µAν −

∂νAµ is (i.e. transforms as) a tensor. Then show that the covariant curl of a

covector is equal to its ordinary curl,

∇µAν −∇νAµ = ∂µAν − ∂νAµ . (4)
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This provides an alternative argument for the fact that ∂µAν − ∂νAµ is a

tensor.

(c) Show that (3) implies that the covariant derivative of the metric is zero,

∇λgµν = 0.

2. Tensor Analysis III: the Covariant Divergence and the Laplacian

An extremely useful identity for the variation (in particular, the derivative) of the

determinant g := |det gµν | of the metric is

g−1δg = gµνδgµν g−1∂λg = gµν∂λgµν . (5)

One proof of this result, based on the explicit expansion of a determinant in terms

of minors, g =
∑

ν(−1)µ+νgµν |mµν | is described in the lecture notes (section

4.5). Another easy proof can be deduced from the fundamental matrix identity

detM = exp tr logM .

(a) Use (5) to show that the contracted Christoffel symbol Γµ
µλ (summation over

the index µ) can be calculated by the simple formula

Γµ
µλ = g−1/2∂λg

+1/2 . (6)

(b) Show that this implies that the covariant divergence of a vector (current) Jµ

and an anti-symmetric tensor Fµν = −F νµ can be written as

∇µJ
µ = g−1/2∂µ(g

1/2Jµ) ∇µF
µν = g−1/2∂µ(g

1/2Fµν) . (7)

(c) Use the formula

2Φ = g−1/2∂µ(g
1/2gµν∂νΦ) (8)

to determine the Laplacian in R
3 in spherical coordinates (r, θ, φ).
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