GR ASSIGNMENTS 04

1. TENSOR ANALYSIS II: THE COVARIANT DERIVATIVE

The covariant derivative V , is the tensorial generalisation of the partial derivative
Oy, i.e. it is such that the covariant derivative of a tensor is again a tensor. More
precisely, the covariant derivative of a (p, g)-tensor is then a (p,q + 1)-tensor be-
cause it has one more lower (covariant) index. Since the partial derivative 9, f of a
scalar f (a (0,0)-tensor) is a covector (a (0, 1)-tensor), one sets V,, f = 0, f. How-
ever, as we have seen, the partial derivative 9,V of a vector V' (a (1,0)-tensor)
is not a (1,1)-tensor. This can be rectified by defining the covariant derivative of
a vector to be

Vu VY =0,V + TV, V. (1)

It can be checked that this is indeed a tensor, the non-tensorial nature of the partial
derivative of a vector cancelling exactly against that of the Christoffel symbols.
A smilar story holds for covectors: the partial derivative 9,4, of a (0, 1)-tensor
(covector) is not a tensor. This can be cured in the same way as for vectors, and

one can check that

VA, = 0,A, —T), Ay (2)

is indeed a (0, 2)-tensor. The action of V, on vectors and covectors can be ex-

tended to arbitrary (p,q)-tensors. For instance, for a (0,2)-tensor B,,, one has
VB = O\Byuw — Fp,\ﬂB/w - FPAVBM) : (3)

(a) An alternative way to arrive at (2) is to demand the Leibniz rule for the
covariant derivative of a product of tensors: deduce (2) from (1) using the
fact that A, V" is a scalar for any vector V*, so that V,(A, V") = 0,(A, V")
and using the Leibniz rule for 9, (i.e. 9,(A, V") = (0,A4,)VY +A,0,V") and
V.

(b) Check that, even though 9, A, is not a tensor, the curl (or rotation) 0,A, —
0, A, is (i.e. transforms as) a tensor. Then show that the covariant curl of a

covector is equal to its ordinary curl,
VA, —V, A, = 0,4, -0,A, . (4)

This provides an alternative argument for the fact that 9,4, — 0, A, is a

tensor.
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Show that (3) implies that the covariant derivative of the metric is zero,
\Y% Ay = 0.

2. STATIONARY AND FREELY FALLING SCHWARZSCHILD OBSERVERS

(a)

Consider a stationary observer (sitting at fixed values of (r > 2m, 0, ¢)) in

the Schwarzschild geometry

2 2m\ "'
ds? = — <1 — —m> dt? + (1 - —m> dr? +r2(d6% + sin®0d¢?) . (5)
r r
Determine his worldline 4-velocity u® = dz®/dr and the acceleration a® =
Vst = u5V5u°‘ and calculate gagao‘aﬁ . What happens as » — oo and

r— 2m?

Consider a freely (and radially) falling observer in the Schwarzschild geom-
etry, initially at rest at radius r(7 = 0) = R > 2m. Show that the proper

time it would (formally) take him to reach r = 0 is (up to factors of ¢) given

by D
()" o

8m

Estimate this for R the radius of the sun (R ~ 7 x 10! c¢cm) and 2m its
Schwarzschild radius (2m ~ 3 x 10° cm), restoring the correct factors of ¢,
and show that this is of the order of an hour.

Remark: this can be interpreted as an estimate for the time of complete

collapse of a star under its own gravitational attraction.



