
GR Assignments 04

1. Tensor Analysis II: the Covariant Derivative

The covariant derivative ∇µ is the tensorial generalisation of the partial derivative

∂µ, i.e. it is such that the covariant derivative of a tensor is again a tensor. More

precisely, the covariant derivative of a (p, q)-tensor is then a (p, q + 1)-tensor be-

cause it has one more lower (covariant) index. Since the partial derivative ∂µf of a

scalar f (a (0, 0)-tensor) is a covector (a (0, 1)-tensor), one sets ∇µf = ∂µf . How-

ever, as we have seen, the partial derivative ∂µV
ν of a vector V ν (a (1, 0)-tensor)

is not a (1, 1)-tensor. This can be rectified by defining the covariant derivative of

a vector to be

∇µV
ν = ∂µV

ν + Γν
µλV

λ . (1)

It can be checked that this is indeed a tensor, the non-tensorial nature of the partial

derivative of a vector cancelling exactly against that of the Christoffel symbols.

A smilar story holds for covectors: the partial derivative ∂µAν of a (0, 1)-tensor

(covector) is not a tensor. This can be cured in the same way as for vectors, and

one can check that

∇µAν = ∂µAν − Γλ
µνAλ (2)

is indeed a (0, 2)-tensor. The action of ∇µ on vectors and covectors can be ex-

tended to arbitrary (p, q)-tensors. For instance, for a (0, 2)-tensor Bµν one has

∇λBµν = ∂λBµν − Γρ
λµBρν − Γρ

λνBµρ . (3)

(a) An alternative way to arrive at (2) is to demand the Leibniz rule for the

covariant derivative of a product of tensors: deduce (2) from (1) using the

fact that AνV
ν is a scalar for any vector V ν , so that ∇µ(AνV

ν) = ∂µ(AνV
ν)

and using the Leibniz rule for ∂µ (i.e. ∂µ(AνV
ν) = (∂µAν)V

ν +Aν∂µV
ν) and

∇µ.

(b) Check that, even though ∂µAν is not a tensor, the curl (or rotation) ∂µAν −

∂νAµ is (i.e. transforms as) a tensor. Then show that the covariant curl of a

covector is equal to its ordinary curl,

∇µAν −∇νAµ = ∂µAν − ∂νAµ . (4)

This provides an alternative argument for the fact that ∂µAν − ∂νAµ is a

tensor.
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(c) Show that (3) implies that the covariant derivative of the metric is zero,

∇λgµν = 0.

2. Stationary and Freely Falling Schwarzschild Observers

(a) Consider a stationary observer (sitting at fixed values of (r > 2m, θ, φ)) in

the Schwarzschild geometry

ds2 = −

(

1−
2m

r

)

dt2 +

(

1−
2m

r

)

−1

dr2 + r2(dθ2 + sin2 θdφ2) . (5)

Determine his worldline 4-velocity uα = dxα/dτ and the acceleration aα =

∇τu
α

≡ uβ∇βu
α and calculate gαβa

αaβ. What happens as r → ∞ and

r → 2m?

(b) Consider a freely (and radially) falling observer in the Schwarzschild geom-

etry, initially at rest at radius r(τ = 0) ≡ R > 2m. Show that the proper

time it would (formally) take him to reach r = 0 is (up to factors of c) given

by

τ = π

(

R3

8m

)1/2

. (6)

Estimate this for R the radius of the sun (R ∼ 7 × 1010 cm) and 2m its

Schwarzschild radius (2m ∼ 3 × 105 cm), restoring the correct factors of c,

and show that this is of the order of an hour.

Remark: this can be interpreted as an estimate for the time of complete

collapse of a star under its own gravitational attraction.
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