

GR Assignments 04

1. Tensor Analysis II: the Covariant Derivative

The covariant derivative ∇_{μ} is the tensorial generalisation of the partial derivative ∂_{μ} , i.e. it is such that the covariant derivative of a tensor is again a tensor. More precisely, the covariant derivative of a (p,q)-tensor is then a (p,q+1)-tensor because it has one more lower (covariant) index. Since the partial derivative $\partial_{\mu}f$ of a scalar f (a (0,0)-tensor) is a covector (a (0,1)-tensor), one sets $\nabla_{\mu}f = \partial_{\mu}f$. However, as we have seen, the partial derivative $\partial_{\mu}V^{\nu}$ of a vector V^{ν} (a (1,0)-tensor) is not a (1,1)-tensor. This can be rectified by defining the covariant derivative of a vector to be

$$\nabla_{\mu}V^{\nu} = \partial_{\mu}V^{\nu} + \Gamma^{\nu}_{\mu\lambda}V^{\lambda} \quad . \tag{1}$$

It can be checked that this is indeed a tensor, the non-tensorial nature of the partial derivative of a vector cancelling exactly against that of the Christoffel symbols. A smilar story holds for covectors: the partial derivative $\partial_{\mu}A_{\nu}$ of a (0,1)-tensor (covector) is *not* a tensor. This can be cured in the same way as for vectors, and one can check that

$$\nabla_{\mu} A_{\nu} = \partial_{\mu} A_{\nu} - \Gamma^{\lambda}_{\mu\nu} A_{\lambda} \tag{2}$$

is indeed a (0,2)-tensor. The action of ∇_{μ} on vectors and covectors can be extended to arbitrary (p,q)-tensors. For instance, for a (0,2)-tensor $B_{\mu\nu}$ one has

$$\nabla_{\lambda} B_{\mu\nu} = \partial_{\lambda} B_{\mu\nu} - \Gamma^{\rho}_{\lambda\mu} B_{\rho\nu} - \Gamma^{\rho}_{\lambda\nu} B_{\mu\rho} \quad . \tag{3}$$

- (a) An alternative way to arrive at (2) is to demand the Leibniz rule for the covariant derivative of a product of tensors: deduce (2) from (1) using the fact that $A_{\nu}V^{\nu}$ is a scalar for any vector V^{ν} , so that $\nabla_{\mu}(A_{\nu}V^{\nu}) = \partial_{\mu}(A_{\nu}V^{\nu})$ and using the Leibniz rule for ∂_{μ} (i.e. $\partial_{\mu}(A_{\nu}V^{\nu}) = (\partial_{\mu}A_{\nu})V^{\nu} + A_{\nu}\partial_{\mu}V^{\nu}$) and ∇_{μ} .
- (b) Check that, even though $\partial_{\mu}A_{\nu}$ is not a tensor, the curl (or rotation) $\partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$ is (i.e. transforms as) a tensor. Then show that the covariant curl of a covector is equal to its ordinary curl,

$$\nabla_{\mu} A_{\nu} - \nabla_{\nu} A_{\mu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \quad . \tag{4}$$

This provides an alternative argument for the fact that $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is a tensor.

- (c) Show that (3) implies that the covariant derivative of the metric is zero, $\nabla_{\lambda}g_{\mu\nu}=0$.
- 2. STATIONARY AND FREELY FALLING SCHWARZSCHILD OBSERVERS
 - (a) Consider a stationary observer (sitting at fixed values of $(r > 2m, \theta, \phi)$) in the Schwarzschild geometry

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) . \tag{5}$$

Determine his worldline 4-velocity $u^{\alpha} = dx^{\alpha}/d\tau$ and the acceleration $a^{\alpha} = \nabla_{\tau}u^{\alpha} \equiv u^{\beta}\nabla_{\beta}u^{\alpha}$ and calculate $g_{\alpha\beta}a^{\alpha}a^{\beta}$. What happens as $r \to \infty$ and $r \to 2m$?

(b) Consider a freely (and radially) falling observer in the Schwarzschild geometry, initially at rest at radius $r(\tau=0)\equiv R>2m$. Show that the proper time it would (formally) take him to reach r=0 is (up to factors of c) given by

$$\tau = \pi \left(\frac{R^3}{8m}\right)^{1/2} \tag{6}$$

Estimate this for R the radius of the sun $(R \sim 7 \times 10^{10} \text{ cm})$ and 2m its Schwarzschild radius $(2m \sim 3 \times 10^5 \text{ cm})$, restoring the correct factors of c, and show that this is of the order of an hour.

Remark: this can be interpreted as an estimate for the time of complete collapse of a star under its own gravitational attraction.