GR Assignments 02 (Optional)

Christoffel Symbols and Coordinate Transformations

One of the exercises I usually give is to determine the (non-tensorial) transformation behaviour of the Christoffel symbols $\Gamma_{\mu \nu \lambda}$ and $\Gamma_{\nu \lambda}^{\mu}$ associated to a metric $g_{\mu \nu}$, defined as

$$
\begin{align*}
\Gamma_{\nu \lambda}^{\mu} & =g^{\mu \rho} \Gamma_{\rho \nu \lambda} \\
\Gamma_{\mu \nu \lambda} & =\frac{1}{2}\left(g_{\mu \nu, \lambda}+g_{\mu \lambda, \nu}-g_{\nu \lambda, \mu}\right), \tag{1}
\end{align*}
$$

under a general coordinate transformation $x^{\mu} \rightarrow y^{\alpha}$, and to show that as a consequence of this non-tensoriality the geodesic equation

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma_{\nu \lambda}^{\mu} \dot{x}^{\nu} \dot{x}^{\lambda}=0 \tag{2}
\end{equation*}
$$

does transform nicely (as a vector, with the Jacobi matrix) under such transformations. This is a bit tedious and not a lot of fun, but it is a good check on your understanding of the formalism and your ability to manipulate correctly and in an accident-free manner objects with multiple indices and summations etc. Therefore, if you are interested in seriously learning and working with general relativity, I recommend that you try to do this exercise yourself at some point (but I will provide you with the solution in case you get stuck). So here is the exercise:

1. Use the tensorial behaviour of the metric under a coordinate transformation $x^{\mu} \rightarrow$ $y^{\alpha}\left(x^{\mu}\right)$,

$$
\begin{equation*}
g_{\alpha \beta}=J_{\alpha}^{\mu} J_{\beta}^{\nu} g_{\mu \nu} \tag{3}
\end{equation*}
$$

to show that the Christoffel symbols transform as $\left(J_{\beta \gamma}^{\mu}=\partial_{\beta} J_{\gamma}^{\mu}=\partial^{2} x^{\mu} / \partial y^{\beta} \partial y^{\gamma}\right)$

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=J_{\mu}^{\alpha} J_{\beta}^{\nu} J_{\gamma}^{\lambda} \Gamma_{\nu \lambda}^{\mu}+J_{\mu}^{\alpha} J_{\beta \gamma}^{\mu} \tag{4}
\end{equation*}
$$

2. Show that, as a consequence of (4), $\ddot{x}^{\mu}+\Gamma_{\nu \lambda}^{\mu} \dot{x}^{\nu} \dot{x}^{\lambda}$ transforms as a vector under coordinate transformations, i.e. that one has

$$
\begin{equation*}
\ddot{y}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} \dot{y}^{\beta} \dot{y}^{\gamma}=J_{\mu}^{\alpha}\left(\ddot{x}^{\mu}+\Gamma_{\nu \lambda}^{\mu} \dot{x}^{\nu} \dot{x}^{\lambda}\right) \tag{5}
\end{equation*}
$$

Hint: you may have to use an identity which follows from differentiating

$$
\begin{equation*}
J_{\mu}^{\alpha} J_{\beta}^{\mu}=\delta_{\beta}^{\alpha} . \tag{6}
\end{equation*}
$$

Solution (Outline):

1. For partial derivatives one has the chain rule $\partial_{\gamma}=J_{\gamma}^{\lambda} \partial_{\lambda}$ (" ∂_{λ} is a covector"). Therefore for the partial derivatives of the metric one has

$$
\begin{equation*}
g_{\alpha \beta, \gamma}=\left(J_{\alpha}^{\mu} J_{\beta}^{\nu} g_{\mu \nu}\right)_{, \gamma}=g_{\mu \nu, \lambda} J_{\alpha}^{\mu} J_{\beta}^{\nu} J_{\gamma}^{\lambda}+\left(J_{\alpha \gamma}^{\mu} J_{\beta}^{\nu}+J_{\alpha}^{\mu} J_{\beta \gamma}^{\nu}\right) g_{\mu \nu} . \tag{7}
\end{equation*}
$$

Adding up the 3 terms comprising the Christoffel symbol $\Gamma_{\alpha \beta \gamma}$, one obtains

$$
\begin{align*}
2 \Gamma_{\alpha \beta \gamma}= & g_{\alpha \beta, \gamma}+g_{\alpha \gamma, \beta}-g_{\beta \gamma, \alpha} \\
= & 2 J_{\alpha}^{\mu} J_{\beta}^{\nu} J_{\gamma}^{\lambda} \Gamma_{\mu \nu \lambda} \tag{8}\\
& +\left(J_{\alpha \gamma}^{\mu} J_{\beta}^{\nu}+J_{\alpha}^{\mu} J_{\beta \gamma}^{\nu}+J_{\alpha \beta}^{\mu} J_{\gamma}^{\nu}+J_{\alpha}^{\mu} J_{\gamma \beta}^{\nu}-J_{\beta \alpha}^{\mu} J_{\gamma}^{\nu}-J_{\beta}^{\mu} J_{\gamma \alpha}^{\nu}\right) g_{\mu \nu}
\end{align*}
$$

In the last line, the 3rd term cancels against the 5th (because $J_{\alpha \beta}^{\mu}$ is symmetric), the 1 st term cancels against the 6 th (because $J_{\alpha \gamma}^{\mu}$ and $g_{\mu \nu}$ are symmetric), while the 2 nd and 4 th term add up, so that one finds

$$
\begin{equation*}
\Gamma_{\alpha \beta \gamma}=J_{\alpha}^{\mu} J_{\beta}^{\nu} J_{\gamma}^{\lambda} \Gamma_{\mu \nu \lambda}+J_{\alpha}^{\mu} J_{\beta \gamma}^{\nu} g_{\mu \nu} \tag{9}
\end{equation*}
$$

Now the hard work has been done. Raising the 1st index of the Christoffel symbol, using the inverse metric

$$
\begin{equation*}
g^{\alpha \delta}=g^{\sigma \rho} J_{\sigma}^{\alpha} J_{\rho}^{\delta} \tag{10}
\end{equation*}
$$

it is now simple to see that one obtains the claimed result (4),

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=g^{\alpha \delta} \Gamma_{\delta \beta \gamma}=J_{\mu}^{\alpha} J_{\beta}^{\nu} J_{\gamma}^{\lambda} \Gamma_{\nu \lambda}^{\mu}+J_{\mu}^{\alpha} J_{\beta \gamma}^{\mu} \tag{11}
\end{equation*}
$$

For example, for the 2 nd term one has (just using properties of inverse Jacobi matrices and metrics)

$$
\begin{align*}
g^{\alpha \delta} J_{\delta}^{\mu} J_{\beta \gamma}^{\nu} g_{\mu \nu} & =g^{\sigma \rho} J_{\sigma}^{\alpha} J_{\rho}^{\delta} J_{\delta}^{\mu} J_{\beta \gamma}^{\nu} g_{\mu \nu}=g^{\sigma \rho} J_{\sigma}^{\alpha} \delta_{\rho}^{\mu} J_{\beta \gamma}^{\nu} g_{\mu \nu} \tag{12}\\
& =g^{\sigma \mu} J_{\sigma}^{\alpha} J_{\beta \gamma}^{\nu} g_{\mu \nu}=\delta_{\nu}^{\sigma} J_{\sigma}^{\alpha} J_{\beta \gamma}^{\nu}=J_{\nu}^{\alpha} J_{\beta \gamma}^{\nu}
\end{align*}
$$

2. The 4 -velocities transform as vectors (the chain rule again), $\dot{y}^{\alpha}=J_{\mu}^{\alpha} \dot{x}^{\mu}$. Therefore for the acceleration one has

$$
\begin{equation*}
\ddot{y}^{\alpha}=J_{\mu}^{\alpha} \ddot{x}^{\mu}+J_{\mu \nu}^{\alpha} \dot{x}^{\mu} \dot{x}^{\nu} . \tag{13}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\ddot{y}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} \dot{y}^{\beta} \dot{y}^{\gamma} & =J_{\mu}^{\alpha}\left(\ddot{x}^{\mu}+\Gamma_{\nu \lambda}^{\mu} J_{\beta}^{\nu} J_{\gamma}^{\lambda} \dot{y}^{\beta} \dot{y}^{\gamma}\right)+J_{\mu}^{\alpha} J_{\beta \gamma}^{\mu} \dot{y}^{\beta} \dot{y}^{\gamma}+J_{\mu \nu}^{\alpha} \dot{x}^{\mu} \dot{x}^{\nu} \\
& =J_{\mu}^{\alpha}\left(\ddot{x}^{\mu}+\Gamma_{\nu \lambda}^{\mu} \dot{x}^{\nu} \dot{x}^{\lambda}\right)+\left(J_{\mu}^{\alpha} J_{\beta \gamma}^{\mu}+J_{\mu \nu}^{\alpha} J_{\beta}^{\mu} J_{\gamma}^{\nu}\right) \dot{y}^{\beta} \dot{y}^{\gamma} \tag{14}
\end{align*}
$$

The 1st term will give us the desired result, and cooperatively the 2 nd term is identically zero because (use $\partial_{\gamma}=J_{\gamma}^{\nu} \partial_{\nu}$ again)

$$
\begin{equation*}
0=\left(\delta_{\beta}^{\alpha}\right)_{, \gamma}=\left(J_{\mu}^{\alpha} J_{\beta}^{\mu}\right)_{, \gamma}=J_{\mu \nu}^{\alpha} J_{\gamma}^{\nu} J_{\beta}^{\mu}+J_{\mu}^{\alpha} J_{\beta \gamma}^{\mu} . \tag{15}
\end{equation*}
$$

