
GR Assignments 06

1. Properties of the Riemann Curvature Tensor

In the course, we defined the Riemann curvature tensor via the commutator of

covariant derivatives,

[∇µ,∇ν ]V
λ = Rλ

σµνV
σ . (1)

and we defined its contractions, the Ricci tensor Rαβ = R
γ
αγβ and the Ricci scalar

R = gαβRαβ. The Riemann curvature tensor has the symmetries

Rαβγδ = −Rαβδγ = −Rβαγδ , Rα[βγδ] = 0 ⇔ Rαβγδ +Rαγδβ +Rαδβγ = 0 (2)

[see section 7.3 of the lecture notes for proofs and make sure that you understand

the details!]

(a) Show that the above symmetries imply that the Ricci tensor is symmetric.

(b) Like any linear operator, the covariant derivative ∇α satisfies the Jacobi

identity

[∇α, [∇β ,∇γ ]] + cyclic permutations = 0 . (3)

Show that this, together with the definition (1), implies the Bianchi identity

∇αRµνβγ + cyclic permutations in (α, β, γ) = 0 (4)

(c) By double-contraction of the Bianchi identity, deduce the contracted Bianchi

identity

∇α(2R
α
γ − δαγR) = 0 (5)

and show that this is equivalent to the statement that the Einstein tensor

Gαβ = Rαβ − 1
2gαβR has vanishing covariant divergence, ∇αGαβ = 0.

Remark: In all these equations indices are lowered and raised with the metric

and its inverse: Rαβγδ = gαλR
λ
βγδ, ∇α = gαρ∇ρ, R

α
γ = gαβRβγ etc.

2. On the Klein-Gordon Field in a Curved Space-Time

The action of a real (free, massice) scalar field φ in a gravitational background

gαβ is

S[φ, gαβ ] =

∫

√
gd4x L ≡ −1

2

∫

√
gd4x

(

gµν∂µφ∂νφ+m2φ2
)

(6)
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The resulting equation of motion is
(

2−m2
)

φ = 0 (make sure that you know

how to derive this!), and the generally covariant energy-momentum tensor is

Tαβ = ∂αφ∂βφ+ gαβL (7)

(a) Show that Tαβ is (covariantly) conserved when φ is a solution to the Klein-

Gordon equation of motion, i.e.

(

2−m2
)

φ = 0 ⇒ ∇αTαβ = 0 . (8)

(b) Show that Tαβ is related to the variation of the action with respect to the

metric by

δS = −1
2

∫ √
gd4x Tαβδg

αβ (9)

3. On the Maxwell Equations in a Curved Space-Time

The Maxwell action in a gravitational background is

S[Aα, gαβ ] =

∫ √
gd4x L = −1

4

∫ √
gd4xFαβF

αβ (10)

The resulting vacuum Maxwell equations are ∇αF
αβ = 0 (make sure that you

know how to derive this!), and the gauge-invariant and generally covariant energy

momentum tensor is

Tαβ = FαγF
γ
β − 1

4gαβFγδF
γδ (11)

(a) Use the Maxwell equations

∇αF
αβ = 0 , ∇αFβγ + cyclic permutations = 0 (12)

to deduce the covariant conservation law

∇αTαβ = 0 . (13)

Remark: This is a tensorial equation. For such calculations you should

just use the properties of the covariant derivative and not write out the

covariant derivative in terms of the non-tensorial Christoffel symbols and

partial derivatives.

Hint: Instead of embarking blindly on this calculation, remind yourself first

how to do the calculation in Minkowski space. Exactly the same procedure

should then work in general. If done correctly, this should be a four-line

calculation.

(b) Show that the energy momentum tensor is related to the variation of the

Maxwell action with respect to the metric in the same way as for the scalar

field in (9).

Hint: don’t forget the implicit metric-dependence in expressions like FαβF
αβ.
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