GR Assignments 03

1. Tensor Analysis I: Tensor Algebra

Let $V^{\mu}(x)$ be a vector field and denote by $\partial_{\mu}=\partial / \partial x^{\mu}$ the partial derivatives. Show that the first-order linear differential operator

$$
\begin{equation*}
V(x)=V^{\mu}(x) \partial_{\mu} \tag{1}
\end{equation*}
$$

is invariant under coordinate transformations. Analogously, let $A_{\mu}(x)$ be a covector. Show that

$$
\begin{equation*}
A(x)=A_{\mu}(x) d x^{\mu} \tag{2}
\end{equation*}
$$

is invariant under coordinate transformations.
Remark: It is extremely useful to think of vector fields in this way. The basic coordinate-independent object is $V . V$ can be expanded in a basis ∂_{μ}, and its components with respect to this basis are the V^{μ}. If you change coordinates, the basis changes, and therefore also the components of V change when expanded with respect to this new basis.
2. Tensor Analysis II: the Covariant Derivative

The covariant derivative of a covector field A_{μ} is

$$
\begin{equation*}
\nabla_{\mu} A_{\nu}=\partial_{\mu} A_{\nu}-\Gamma_{\mu \nu}^{\lambda} A_{\lambda} \tag{3}
\end{equation*}
$$

Show that, even though $\partial_{\mu} A_{\nu}$ is not a tensor (which is why the Γ-term is required in $\nabla_{\mu} A_{\nu}$), the curl (or rotation) $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is (i.e. transforms as) a tensor. Then show that the covariant curl of a covector is equal to its ordinary curl,

$$
\begin{equation*}
\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{4}
\end{equation*}
$$

This provides an alternative argument for the fact that $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is a tensor.

3. The Effective Geodesic Potential

Generalising the discussion in section 24.1 of the lecture notes, and following Remark 5 at the end of that section, derive the effective potential equation for the general class of static spherically symmetric metrics of the form

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega^{2} \quad, \quad f(r)=1+2 \phi(r) \tag{5}
\end{equation*}
$$

(this includes e.g. possibly electrically and / or magnetically charged stars and black holes, and / or in the presence of a cosmological constant).

