GR Assignments 04

1. Tensor Analysis III: the Covariant Divergence and the Laplacian

An extremely useful identity for the variation (in particular, the derivative) of the determinant $g:=\left|\operatorname{det} g_{\mu \nu}\right|$ of the metric is (see section 4.6 of the lecture notes)

$$
\begin{equation*}
g^{-1} \delta g=g^{\mu \nu} \delta g_{\mu \nu} \quad g^{-1} \partial_{\lambda} g=g^{\mu \nu} \partial_{\lambda} g_{\mu \nu} \tag{1}
\end{equation*}
$$

(a) Use (1) to show that the contracted Christoffel symbol $\Gamma_{\mu \lambda}^{\mu}$ (summation over the index μ) can be calculated by the simple formula

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\mu}=g^{-1 / 2} \partial_{\lambda} g^{+1 / 2} \tag{2}
\end{equation*}
$$

(b) Show that this implies that the covariant divergence of a vector (current) J^{μ} and an anti-symmetric tensor $F^{\mu \nu}=-F^{\nu \mu}$ can be written as

$$
\begin{equation*}
\nabla_{\mu} J^{\mu}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} J^{\mu}\right) \quad \nabla_{\mu} F^{\mu \nu}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} F^{\mu \nu}\right) \tag{3}
\end{equation*}
$$

(c) Use the formula

$$
\begin{equation*}
\square \Phi=g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \Phi=\nabla_{\alpha}\left(g^{\alpha \beta} \nabla_{\beta} \Phi\right)=g^{-1 / 2} \partial_{\alpha}\left(g^{1 / 2} g^{\alpha \beta} \partial_{\beta} \Phi\right) \tag{4}
\end{equation*}
$$

(the final equality is a consequence of eq. (3)) to determine the Laplacian in \mathbb{R}^{3} in spherical coordinates (r, θ, ϕ).

2. Freely Falling Schwarzschild Observers

Consider a freely (and radially) falling observer in the Schwarzschild geometry, initially at rest at radius $r(\tau=0) \equiv R>2 m$. Show that the proper time it would (formally) take him to reach $r=0$ is (up to factors of c) given by (see section 25.2)

$$
\begin{equation*}
\tau=\pi\left(\frac{R^{3}}{8 m}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

Estimate this for R the radius of the sun $\left(R \sim 7 \times 10^{10} \mathrm{~cm}\right)$ and $2 m$ its Schwarzschild radius ($2 m \sim 3 \times 10^{5} \mathrm{~cm}$), restoring the correct factors of c, and show that this is of the order of an hour.
Remark: this can be interpreted as a very rough estimate for the time of complete collapse of a star under its own gravitational attraction.

