

GR Assignments 03

1. Tensor Analysis I: the Covariant Derivative

The covariant derivatives of a covector field A_{μ} and a (0,2) tensor $B_{\mu\nu}$ field are

$$\nabla_{\mu}A_{\nu} = \partial_{\mu}A_{\nu} - \Gamma^{\lambda}_{\mu\nu}A_{\lambda}
\nabla_{\lambda}B_{\mu\nu} = \partial_{\lambda}B_{\mu\nu} - \Gamma^{\rho}_{\lambda\mu}B_{\rho\nu} - \Gamma^{\rho}_{\lambda\nu}B_{\mu\rho} \quad .$$
(1)

(a) Show that, even though $\partial_{\mu}A_{\nu}$ is *not* a tensor (which is why the Γ -term is required in $\nabla_{\mu}A_{\nu}$), the *curl* (or *rotation*) $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is (i.e. transforms as) a tensor. Then show that the covariant curl of a covector is equal to its ordinary curl,

$$\nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \quad . \tag{2}$$

This provides an alternative argument for the fact that $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is a tensor.

(b) Show that the covariant derivative of the metric is zero, $\nabla_{\lambda}g_{\mu\nu} = 0$.

2. Stationary and Freely Falling Schwarzschild Observers

(a) Consider a stationary observer (sitting at fixed values of $(r > 2m, \theta, \phi)$) in the Schwarzschild geometry

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \quad . \tag{3}$$

Determine his worldline 4-velocity $u^{\alpha} = dx^{\alpha}/d\tau$ and the covariant (tensorial, specifically vectorial) acceleration $a^{\alpha} = \dot{u}^{\alpha} + \Gamma^{\alpha}_{\beta\gamma} u^{\beta} u^{\gamma}$ and calculate $g_{\alpha\beta} a^{\alpha} a^{\beta}$.

(b) Consider a freely (and radially) falling observer in the Schwarzschild geometry, initially at rest at radius $r(\tau = 0) \equiv R > 2m$. Show that the proper time it would (formally) take him to reach r = 0 is (up to factors of c) given by

$$\tau = \pi \left(\frac{R^3}{8m}\right)^{1/2} \quad . \tag{4}$$

Estimate this for R the radius of the sun $(R \sim 7 \times 10^{10} \text{ cm})$ and 2m its Schwarzschild radius $(2m \sim 3 \times 10^5 \text{ cm})$, restoring the correct factors of c, and show that this is of the order of an hour.

Remark: this can be interpreted as an estimate for the time of complete collapse of a star under its own gravitational attraction.