GR Assignments 03

1. Tensor Analysis I: the Covariant Derivative

The covariant derivatives of a covector field A_{μ} and a $(0,2)$ tensor $B_{\mu \nu}$ field are

$$
\begin{align*}
\nabla_{\mu} A_{\nu} & =\partial_{\mu} A_{\nu}-\Gamma_{\mu \nu}^{\lambda} A_{\lambda} \tag{1}\\
\nabla_{\lambda} B_{\mu \nu} & =\partial_{\lambda} B_{\mu \nu}-\Gamma_{\lambda \mu}^{\rho} B_{\rho \nu}-\Gamma_{\lambda \nu}^{\rho} B_{\mu \rho}
\end{align*}
$$

(a) Show that, even though $\partial_{\mu} A_{\nu}$ is not a tensor (which is why the Γ-term is required in $\nabla_{\mu} A_{\nu}$), the curl (or rotation) $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is (i.e. transforms as) a tensor. Then show that the covariant curl of a covector is equal to its ordinary curl,

$$
\begin{equation*}
\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{2}
\end{equation*}
$$

This provides an alternative argument for the fact that $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is a tensor.
(b) Show that the covariant derivative of the metric is zero, $\nabla_{\lambda} g_{\mu \nu}=0$.

2. Stationary and Freely Falling Schwarzschild Observers

(a) Consider a stationary observer (sitting at fixed values of $(r>2 m, \theta, \phi)$) in the Schwarzschild geometry

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 m}{r}\right) d t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{3}
\end{equation*}
$$

Determine his worldline 4-velocity $u^{\alpha}=d x^{\alpha} / d \tau$ and the covariant (tensorial, specifically vectorial) acceleration $a^{\alpha}=\dot{u}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} u^{\beta} u^{\gamma}$ and calculate $g_{\alpha \beta} a^{\alpha} a^{\beta}$.
(b) Consider a freely (and radially) falling observer in the Schwarzschild geometry, initially at rest at radius $r(\tau=0) \equiv R>2 m$. Show that the proper time it would (formally) take him to reach $r=0$ is (up to factors of c) given by

$$
\begin{equation*}
\tau=\pi\left(\frac{R^{3}}{8 m}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

Estimate this for R the radius of the sun $\left(R \sim 7 \times 10^{10} \mathrm{~cm}\right)$ and $2 m$ its Schwarzschild radius $\left(2 m \sim 3 \times 10^{5} \mathrm{~cm}\right)$, restoring the correct factors of c, and show that this is of the order of an hour.
Remark: this can be interpreted as an estimate for the time of complete collapse of a star under its own gravitational attraction.

