GR Assignments 04

1. Tensor Analysis II: the Covariant Divergence and the Laplacian

An extremely useful identity for the variation (in particular, the derivative) of the determinant $g:=\left|\operatorname{det} g_{\mu \nu}\right|$ of the metric is (see section 5.6 of the lecture notes)

$$
\begin{equation*}
g^{-1} \delta g=g^{\mu \nu} \delta g_{\mu \nu} \quad g^{-1} \partial_{\lambda} g=g^{\mu \nu} \partial_{\lambda} g_{\mu \nu} . \tag{1}
\end{equation*}
$$

(a) Show that this implies that the covariant divergence of a vector (current) J^{μ} can be calculated by the simple formula

$$
\begin{equation*}
\nabla_{\mu} J^{\mu}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} J^{\mu}\right) \tag{2}
\end{equation*}
$$

(b) Show that this in turn implies that the covariant divergence of an antisymmetric tensor $F^{\mu \nu}=-F^{\nu \mu}$ and the covariant Laplacian of a scalar f, defined by $\square f=g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} f$, can be written as

$$
\begin{equation*}
\nabla_{\mu} F^{\mu \nu}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} F^{\mu \nu}\right) \quad, \quad \square f=\nabla_{\alpha}\left(g^{\alpha \beta} \nabla_{\beta} f\right)=g^{-1 / 2} \partial_{\alpha}\left(g^{1 / 2} g^{\alpha \beta} \partial_{\beta} f\right) \tag{3}
\end{equation*}
$$

2. Static Schwarzschild ObServers in Eddington-Finkelstein Coordinates

In Exercise 03.2(a), you determined the acceleration of a static observer in Schwarzschild (SS) coordinates. The acceleration vector a^{α} appeared to be non-singular in these coordinates. This is misleading, however: its norm (a scalar) turned out to be singular as $r \rightarrow 2 m$ because the relevant component $g_{r r}=f(r)^{-1}$ is singular there.

The aim of this exercise is to look at what happens in the simplest coordinate system in which the metric is not singular at $r=2 m$, namely in EddingtonFinkelstein (EF) coordinates,

$$
\begin{equation*}
d s^{2}=-f(r) d v^{2}+2 d v d r+r^{2} d \Omega^{2} . \tag{4}
\end{equation*}
$$

(a) Calculate $a^{\alpha}=\dot{u}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} u^{\beta} u^{\gamma}$ for a static observer in EF coordinates.
(b) Alternatively, determine a^{α} in EF coordinates simply from the result in SS coordinates by using the coordinate transformation.
(c) Determine the norm $g_{\alpha \beta} a^{\alpha} a^{\beta}$ in EF coordinates, and show that the result is equal to that obtained previously in SS coordinates.

