
GR Assignments 05

1. On the Klein-Gordon Field in a Curved Space-Time

The action of a real (free, massice) scalar field φ in a gravitational background

gαβ is

S[φ, gαβ ] =

∫

√
gd4x L ≡ −1

2

∫

√
gd4x

(

gµν∂µφ∂νφ+m2φ2
)

(1)

The resulting equation of motion is
(

✷−m2
)

φ = 0 (make sure that you know

how to derive this!), and the generally covariant energy-momentum tensor is

Tαβ = ∂αφ∂βφ+ gαβL (2)

(a) Show that Tαβ is (covariantly) conserved when φ is a solution to the Klein-

Gordon equation of motion, i.e.

(

✷−m2
)

φ = 0 ⇒ ∇αTαβ = 0 . (3)

(b) Show that Tαβ is related to the variation of the action with respect to the

metric by

δS = −1
2

∫ √
gd4x Tαβδg

αβ (4)

2. On the Maxwell Equations in a Curved Space-Time

The Maxwell action in a gravitational background is

S[Aα, gαβ ] =

∫ √
gd4x L = −1

4

∫ √
gd4xFαβF

αβ (5)

The vacuum Maxwell equations are ∇αF
αβ = 0,∇[αFβγ] = 0 (make sure that

you know how to derive these!), and the gauge-invariant and generally covariant

energy momentum tensor is

Tαβ = FαγF
γ
β − 1

4gαβFγδF
γδ (6)

(a) Use the Maxwell equations to deduce the covariant conservation law

∇αF
αβ = 0 , ∇αFβγ +cyclic permutations = 0 ⇒ ∇αTαβ = 0 . (7)

Remark: This is a tensorial equation. For such calculations you should

just use the properties of the covariant derivative and not write out the
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covariant derivative in terms of the non-tensorial Christoffel symbols and

partial derivatives.

Hint: Instead of embarking blindly on this calculation, remind yourself first

how to do the calculation in Minkowski space. Exactly the same procedure

should then work in general. If done correctly, this should be a four-line

calculation.

(b) Show that the energy momentum tensor is related to the variation of the

Maxwell action with respect to the metric in the same way as for the scalar

field in (4).

Hint: don’t forget the implicit metric-dependence in expressions like FαβF
αβ.

3. Painlevé-Gullstrand Coordinates for the Schwarzschild Space-Time

In the Schwarzschild coordinates (t, r), the Schwarzschild metric has the standard

form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 f(r) = 1− 2m

r
. (8)

(a) Show that the metric

ds2 = −f(r)dT 2 + 2C(r)dTdr + f(r)−1(1− C(r)2)dr2 + r2dΩ2 (9)

is equivalent to the Schwarzschild metric for any function C(r). [Hint: Begin

with (8) and consider the coordinate transformation T (t, r) = t+ ψ(r).]

(b) Now choose C(r) such that grr = 1 (Painlevé-Gullstrand (PG) coordinates).

Write down the resulting metric and show that it is completely non-singular

for all r > 0 (in particular for r → 2m), i.e. show that the metric coefficients

are bounded and the determinant is non-zero.

(c) Show that the choice C(r) = 1 gives rise to the metric in Eddington-Finkelstein

coordinates (with T ≡ v = t+ r∗).

Optional Further Exercises:

Test your understanding/knowledge of GR

(solutions will not be provided - see the Lecture notes for details).

The metric in PG coordinates is related to timelike geodesics in the same way as

the metric in Eddington-Finkelstein coordinates is related to null geodesics. To

see this, consider the field of normal vectors uα = −∂αT orthogonal to the surfaces

of constant T (in Scharzschild coordinates xα = (t, r, . . .)).

(d) Show that uαuα = −1. Then show that in general the two properties uαuα =

const and uα = −∂αT imply that uα is geodesic, i.e. uβ∇βu
α = 0.

(e) Show that the geodesics xα(τ) to which the uα are tangent (uα = ẋα) are

radial geodesics (L = 0) with proper time τ = T and energy E = 1 (corre-

sponding to observers that would have started off at rest at r = ∞).
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