GR Assignments 06

1. Riemann Curvature Tensor and Differential Identities

In the course, we defined the Riemann curvature tensor via the commutator of covariant derivatives,

$$
\begin{equation*}
\left[\nabla_{\alpha}, \nabla_{\beta}\right] V^{\gamma}=R_{\delta \alpha \beta}^{\gamma} V^{\delta} \quad, \quad\left[\nabla_{\alpha}, \nabla_{\beta}\right] T^{\gamma \delta}=R_{\epsilon \alpha \beta}^{\gamma} T^{\epsilon \delta}+R_{\epsilon \alpha \beta}^{\delta} T^{\gamma \epsilon}, \tag{1}
\end{equation*}
$$

etc. and we defined its contractions, the Ricci tensor $R_{\alpha \beta}=R_{\alpha \gamma \beta}^{\gamma}$ and the Ricci scalar $R=g^{\alpha \beta} R_{\alpha \beta}$. The Riemann curvature tensor has the symmetries

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta}=-R_{\alpha \beta \delta \gamma}=-R_{\beta \alpha \gamma \delta} \quad, \quad R_{\alpha[\beta \gamma \delta]}=0 \Leftrightarrow R_{\alpha \beta \gamma \delta}+R_{\alpha \gamma \delta \beta}+R_{\alpha \delta \beta \gamma}=0 \tag{2}
\end{equation*}
$$

These symmetries also imply that the Ricci tensor is symmetric, $R_{\alpha \beta}=R_{\beta \alpha}$. [see section 8.3 of the lecture notes for proofs and make sure that you understand the details!]
(a) Like any linear operator, the covariant derivative ∇_{α} satisfies the Jacobi identity

$$
\begin{equation*}
\left[\nabla_{\alpha},\left[\nabla_{\beta}, \nabla_{\gamma}\right]\right]+\text { cyclic permutations }=0 . \tag{3}
\end{equation*}
$$

Show that this implies the Bianchi identity

$$
\begin{equation*}
\nabla_{\alpha} R_{\mu \nu \beta \gamma}+\text { cyclic permutations in }(\alpha, \beta, \gamma)=0 \tag{4}
\end{equation*}
$$

(b) By double-contraction of the Bianchi identity, deduce the contracted Bianchi identity

$$
\begin{equation*}
\nabla_{\alpha}\left(2 R_{\gamma}^{\alpha}-\delta_{\gamma}^{\alpha} R\right)=0 \tag{5}
\end{equation*}
$$

and show that this is equivalent to the statement that the Einstein tensor $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R$ has vanishing covariant divergence, $\nabla^{\alpha} G_{\alpha \beta}=0$.
(c) By double-contracting the expression for $\left[\nabla_{\alpha}, \nabla_{\beta}\right] T^{\gamma \delta}$, show that for any tensor $T^{\alpha \beta}$ one has

$$
\begin{equation*}
\left[\nabla_{\alpha}, \nabla_{\beta}\right] T^{\alpha \beta}=0 \tag{6}
\end{equation*}
$$

(d) Use this result to show that the Maxwell equations $\nabla_{\alpha} F^{\alpha \beta}=-J^{\beta}$ imply that the current is covariantly conserved,

$$
\begin{equation*}
\nabla_{\alpha} F^{\alpha \beta}=-J^{\beta} \quad \Rightarrow \quad \nabla_{\beta} J^{\beta}=0 \tag{7}
\end{equation*}
$$

Remark: In all these equations indices are lowered and raised with the metric and its inverse: $R_{\alpha \beta \gamma \delta}=g_{\alpha \lambda} R_{\beta \gamma \delta}^{\lambda}, \nabla^{\alpha}=g^{\alpha \rho} \nabla_{\rho}, R_{\gamma}^{\alpha}=g^{\alpha \beta} R_{\beta \gamma}$ etc.
2. Curvature of a class of 2-dimensional Metrics

Consider the 2-dimensional line element

$$
\begin{equation*}
d s^{2}=d x^{2}+f(x)^{2} d \phi^{2} . \tag{8}
\end{equation*}
$$

Show that the Ricci tensor and Ricci scalar curvature of this metric are

$$
\begin{equation*}
R_{\alpha \beta}=-\left(f^{\prime \prime} / f\right) g_{\alpha \beta} \quad, \quad R(x)=-2 f^{\prime \prime}(x) / f(x) \tag{9}
\end{equation*}
$$

Hint: Calculate the Christoffel symbols from the Euler-Lagrange equations. Then determine the one independent component of the Riemann tensor, e.g. $R_{\phi x \phi}^{x}$, and then deduce the Ricci tensor and Ricci scalar from this.

Remark: In particular, for the Euclidean metric and the standard metrics on the sphere and the hyperboloid one finds

$$
f(x)=\left\{\begin{array}{cc}
x & \left(R^{2}\right) \tag{10}\\
\sin x & \left(S^{2}\right) \\
\sinh x & \left(H^{2}\right)
\end{array} \quad \Rightarrow \quad R=\left\{\begin{array}{r}
0 \\
+2 \\
-2
\end{array}\right.\right.
$$

In 2 dimensions, R is related to the Gauss Curvature K of a surface by $K=R / 2$ so that $K=0, \pm 1$ in these examples.

