SOLUTIONS TO ASSIGNMENTS 02

1. GEODESICS

(a)

With the Lagrangian
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where g, = g, (2”) one computes
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Thus the Euler-Lagrange equations become
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and they can be written in the usual (geodesic equation) form by multiplying

by ¢™ to move the index p up :
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First we compute :
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Now using the identity
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together with the fact that z#(7) is a solution to the geodesic equation, which

means that we also have :
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which is obviously zero if we relabel the indices.



(¢) The metric on the 2-sphere is
ds? = R? (d6” + sin® (9)do?) (13)

so that in the (6, ¢) coordinates we have :
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Because g, is diagonal and g,, = g¢,u.(0), the only non-vanishing contri-
butions to the Christoffel symbols will come from terms involving Jggse-
Keeping this in mind, we first compute the Christoffel symbols with upper

index 6,
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and we see that the only non-vanishing term with 6 on the top is ngqb :

1 .

Now if we choose ¢ to be on the top, we get
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so that the only non-vanishing terms with ¢ on the top are Fgg = I‘g’(ﬁ :
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With these Christoffel symbols we can now write down the geodesic equation
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Using the Euler-Lagrange equations with £ = %(92 + sin(0)24?), we get
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which are the same equations as in (19).

We can easily see that the great circles (0(7), (7)) = (7,¢0) on S? are
solutions to the equations just found. It is indeed the case because for that
particular solution ¢ is constant along a great circle, which implies qb = qS =0
and simultaneously 6(7) = 7 so that § vanishes. By looking at equation (19)
or (20) we can see that every curve with 6 = ¢ = ¢ = 0 trivially satisfy both

equations and therefore such curves are geodesics.



