
Solutions to Assignments 03

1. Tensor analysis I: Tensor Algebra

(a) Under a coordinate transformation xµ → x′α = yα(x) a scalar (function) f(x)

transforms as f → f ′ with f ′(y(x)) = f(x), while according to the chain rule

the partial derivatives transform with the Jacobian as

∂α ≡ ∂yα = Jµα∂µ . (1)

Thus

∂αf
′(y) = Jµα∂µf(x) (2)

transforms as a covector.

(b) By definition of a tensor we have (writing Aαβ instead of A′αβ for simplicity,

and suppressing the argument)

Aαβ = JµαJ
ν
βAµν , Bβ = JβρB

ρ , (3)

and therefore

AαβB
β = JµαJ

ν
βJ

β
ρAµνB

ρ = Jµαδ
ν
ρAµνB

ρ = JµαAµνB
ν (4)

is a covector. The same kind of argument now shows that

AαβB
αBβ = Jαρ B

ρJµαAµνB
ν = δµρB

ρAµνB
ν = BµAµνB

ν (5)

is a scalar.

(c) The invariance of V (x) under coordinate transformations follows from the

fact that partial derivatives are covectors and that they are contracted with

a vector to form the field V (x),

V α∂α = Jαµ J
ν
αV

µ∂ν = δνµV
µ∂ν = V µ∂µ . (6)

Likewise for a covector:

dyα = Jαν dx
ν ⇒ Aαdy

α = JµαJ
α
ν Aµdx

ν = Aµdx
µ . (7)

2. The Effective Geodesic Potential

Starting with the metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 , f(r) = 1 + 2φ(r) (8)

one implements the following steps:
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• the Lagrangian L is conserved,

−f(r)ṫ2 + f(r)−1ṙ2 + r2(θ̇2 + sin2 θφ̇2) = ε (9)

where ε = −1, 0 for massive (massless) particles.

• by spherical symmetry, angular momentum is conserved, thus the motion is

planar, and one can choosse the coordinates such that this motion takes place

in the equatorial plane θ = π/2, θ̇ = 0, leading to

−f(r)ṫ2 + f(r)−1ṙ2 + r2φ̇2 = ε . (10)

• rotational and time-translational symmetry lead to the conserved quantities

E = f(r)ṫ L = r2φ̇ (11)

(energy and angular momentum), and using these equations to eliminate ṫ

and φ̇ from the Lagrangian, one finds

−E2f(r)−1 + f(r)−1ṙ2 + L2/r2 = ε . (12)

Multiplying by f(r) and rearranging, this gives

ṙ2 + f(r)L2/r2 − εf(r) = E2 . (13)

• This already has the desired form of an effective Newtonian potential equa-

tion, but it is typically more useful to separate the constant (asymptotically

Minkowski) part of f(r) from the rest. Thus, with f(r) = 1 + 2φ(r) one has

1
2 ṙ

2 + Veff (r) = Eeff (14)

where

Veff (r) ≡ V (r) + L2/2r2 = φ(r)(−ε+ L2/r2) + L2/2r2 (15)

and

Eeff = (E2 + ε)/2 (16)
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