SOLUTIONS TO ASSIGNMENTS 04

1. STATIONARY AND FREELY FALLING SCHWARZSCHILD OBSERVERS
(a) The observer is sitting at fixed radius and angles, therefore his worldline
4-velocity is of the form

dxH
o=t =(0,0,0) . ()

The proper time normalisation condition implies
wu, =-1 = U =——— (2)

(we have chosen u' > 0 because the oberver evolves forward in time, £ > 0).

The acceleration is then

a =Vout = uVut

= u'ouu +u'Thu!
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and therefore the norm of the acceleration is
guat'a” = g.a’a
2
- ﬁ% . (4)
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Note that this approaches the Newtonian value (m/r?)? for r — oo, while
the required acceleration to keep the stationary observer at rest diverges as

r— 2m.

(b) For zero angular momentum, and with 7,—r = 0 the effective potential equa-

tion reduces to

2 om 2
E2—1:7*2—7m = 2=t 0 (5)



which integrates to

_ " Rr \'/?
TR—r = —(2m) 1/2/R dr <R—T> . (6)
This integral can be calculated in closed form, e.g. via the change of variables
%:SiHQOé algagg , (7)
leading to
1/2 3N\ 1/2
TR—ry = 2 ( ) /al do sin® a = <2R—m> [ — %Sin2a]z2 . (8)
For r1 — 0 < a3 — 0 one obtains
R3 1/2 R3 1/2
— (== 2) =
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R and rg = 2m have dimensions of length, thus the quantity above also has
dimensions of length, so what we have actually calculated is ¢, not 7. To
obtain proper time, we thus need to divide by c¢. Using the approximate

values
(R)sun = 7 x 10%m  (2m)gun = 3 x 10°cm ¢~ 3 x 10%ecms™!  (10)
one finds Tp_s0 &~ 2 x 10%s, which is roughly 30 minutes.

2. KRUSKAL COORDINATES FOR THE SCHWARZSCHILD SPACE-TIME: SOLUTION I
(DIRECT CALCULATION USING THE COORDINATE TRANSFORMATION)

To compute the Schwarzschild metric in the new (X, T')-coordinates, it is useful
to consider the two expression ¢(X,7T") and 7*(X,T). To find these we first rewrite
(X,T) as

X =l /Am cosh(t/dm) , T = o /Am sinh(t/4m) . (11)

This leads in particular to

oT/2m

X2 _ 72 :er*/Qm r/2m< r _1> =rf(r) (12)
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which is a way to express r implicitly (f(r) = (0r/0rx) =1 —2m/r). Now, from
(11) it also follows that

t =4matanh (T/X) , r*=2mlog(X*-T?) . (13)

This allows us to compute the partial derivative we will need:

ot 4mX or  Or Orx 4mT
T~ X2-T? T — or«= 0T =~ T2 — X2
(14)
ot 4mT ﬁ _ ﬁ% _p AmX
X T2 — X2 0X Orx0X X272
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Then it is straightforward to compute the Schwarzschild metric starting from the

old (¢,r)-coordinate and we get

ds® = —fdt* + f~'dr® + r?dQ?

ot or S
— (—dTJra—XdX) + (—dTJra—XdX) +r2dQ)

1 2
= % |~ (XdT = TdX)? + (~TdT + XdX)?| +r?d9*
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.

where in the last step we have used (12).
. KRUSKAL COORDINATES FOR THE SCHWARZSCHILD SPACE-TIME: SOLUTION II
(MASSAGING THE METRIC INTO A CONVENIENT FORM)

The previous derivation may make you wonder how on earth one came up with
a coordinate transformation like (11) in the first place. Here is a pedestrian way

towards guessing that this might be a good transformation:

Write the Schwarzschild metric as
ds® = (1 —2m/r)[—dt* + dr*?] +r2dQ? = (1 — 2m/r)[—du dv] + r(u,v)>dQ* (16)

where r* = r 4+ 2mlog(r/2m — 1) is the tortoise coordinate, and v = t + r*,
u =t —7r* are the “advanced” and “retarded” Eddington-Finkelstein coordinates.
Now note that

v—u r T
=g tlog (%—Q , (17)
so that
1_2_m:2_m<L_1):2_me—r/2me(v—u)/4m . (18)
T r \2m T
Thus the metric is
ds® = 2Tme—r/2m <ev/4mdv) (—e _u/4mdu) + r(u,v)2dQ? . (19)

Therefore it is natural to introduce

V = e/4m , U=—e—uw/4m (20)

)

and T'and X viaV =T+ X,U =T — X, so that

9 3
g2 = 22 ¢ TT2MGUay 1 r(u,v)2d02
T
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= e [—dT? 4+ dX?| + r(T, X)*dQ?* . (21)
,



