Solutions to Assignments 04

1. Stationary and Freely Falling Schwarzschild Observers

(a) The observer is sitting at fixed radius and angles, therefore his worldline 4 -velocity is of the form

$$
\begin{equation*}
\frac{d x^{\mu}}{d \tau}=u^{\mu}=\left(u^{t}, 0,0,0\right) \tag{1}
\end{equation*}
$$

The proper time normalisation condition implies

$$
\begin{equation*}
u^{\mu} u_{\mu}=-1 \quad \Rightarrow \quad u^{t}=\frac{1}{\sqrt{1-\frac{2 m}{r}}} \tag{2}
\end{equation*}
$$

(we have chosen $u^{t}>0$ because the oberver evolves forward in time, $\dot{t}>0$). The acceleration is then

$$
\begin{align*}
a^{\mu}=\nabla_{\tau} u^{\mu} & =u^{\rho} \nabla_{\rho} u^{\mu} \\
& =u^{t} \partial_{t} u^{\mu}+u^{t} \Gamma_{t t}^{\mu} u^{t} \\
& =\Gamma_{t t}^{\mu} \frac{1}{1-\frac{2 m}{r}} \\
& =-\frac{1}{2} g^{\mu \rho} \partial_{\rho} g_{t t} \frac{1}{1-\frac{2 m}{r}} \\
\text { for } \mu \neq r & =0 \\
\text { for } \mu=r & =\frac{1}{2} g^{r r} \partial_{r}\left(1-\frac{2 m}{r}\right) \frac{1}{1-\frac{2 m}{r}} \\
& =-\frac{1}{2} \partial_{r} \frac{2 m}{r}=\frac{m}{r^{2}} \tag{3}
\end{align*}
$$

and therefore the norm of the acceleration is

$$
\begin{align*}
g_{\mu \nu} a^{\mu} a^{\nu} & =g_{r r} a^{r} a^{r} \\
& =\frac{1}{1-\frac{2 m}{r}} \frac{m^{2}}{r^{4}} \tag{4}
\end{align*}
$$

Note that this approaches the Newtonian value $\left(m / r^{2}\right)^{2}$ for $r \rightarrow \infty$, while the required acceleration to keep the stationary observer at rest diverges as $r \rightarrow 2 m$.
(b) For zero angular momentum, and with $\dot{r}_{r=R}=0$ the effective potential equation reduces to

$$
\begin{equation*}
E^{2}-1=\dot{r}^{2}-\frac{2 m}{r} \Rightarrow \quad \dot{r}^{2}=\frac{2 m}{r}-\frac{2 m}{R} \tag{5}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
\tau_{R \rightarrow r_{1}}=-(2 m)^{-1 / 2} \int_{R}^{r_{1}} d r\left(\frac{R r}{R-r}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

This integral can be calculated in closed form, e.g. via the change of variables

$$
\begin{equation*}
\frac{r}{R}=\sin ^{2} \alpha \quad \alpha_{1} \leq \alpha \leq \frac{\pi}{2} \tag{7}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\tau_{R \rightarrow r_{1}}=2\left(\frac{R^{3}}{2 m}\right)^{1 / 2} \int_{\alpha_{1}}^{\pi / 2} d \alpha \sin ^{2} \alpha=\left(\frac{R^{3}}{2 m}\right)^{1 / 2}\left[\alpha-\frac{1}{2} \sin 2 \alpha\right]_{\alpha_{1}}^{\pi / 2} \tag{8}
\end{equation*}
$$

For $r_{1} \rightarrow 0 \Leftrightarrow \alpha_{1} \rightarrow 0$ one obtains

$$
\begin{equation*}
\tau_{R \rightarrow 0}=\left(\frac{R^{3}}{2 m}\right)^{1 / 2}(\pi / 2)=\pi\left(\frac{R^{3}}{8 m}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

R and $r_{S}=2 m$ have dimensions of length, thus the quantity above also has dimensions of length, so what we have actually calculated is $c \tau$, not τ. To obtain proper time, we thus need to divide by c. Using the approximate values

$$
\begin{equation*}
(R)_{\text {sun }} \approx 7 \times 10^{10} \mathrm{~cm} \quad(2 m)_{\text {sun }} \approx 3 \times 10^{5} \mathrm{~cm} \quad c \approx 3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1} \tag{10}
\end{equation*}
$$

one finds $\tau_{R \rightarrow 0} \approx 2 \times 10^{3} \mathrm{~s}$, which is roughly 30 minutes.

2. Kruskal Coordinates for the Schwarzschild Space-Time: Solution I

 (Direct calculation using the coordinate transformation)To compute the Schwarzschild metric in the new (X, T)-coordinates, it is useful to consider the two expression $t(X, T)$ and $r^{*}(X, T)$. To find these we first rewrite (X, T) as

$$
\begin{equation*}
X=\mathrm{e}^{r^{*} / 4 m} \cosh (t / 4 m) \quad, \quad T=\mathrm{e}^{r^{*} / 4 m} \sinh (t / 4 m) \tag{11}
\end{equation*}
$$

This leads in particular to

$$
\begin{equation*}
X^{2}-T^{2}=\mathrm{e}^{r^{*} / 2 m}=\mathrm{e}^{r / 2 m}\left(\frac{r}{2 m}-1\right)=r f(r) \frac{\mathrm{e}^{r / 2 m}}{2 m} \tag{12}
\end{equation*}
$$

which is a way to express r implicitly $(f(r)=(\partial r / \partial r *)=1-2 m / r)$. Now, from (11) it also follows that

$$
\begin{equation*}
t=4 m \operatorname{atanh}(T / X) \quad, \quad r^{*}=2 m \log \left(X^{2}-T^{2}\right) . \tag{13}
\end{equation*}
$$

This allows us to compute the partial derivative we will need:

$$
\begin{align*}
\frac{\partial t}{\partial T} & =\frac{4 m X}{X^{2}-T^{2}} & \frac{\partial r}{\partial T}=\frac{\partial r}{\partial r *} \frac{\partial r *}{\partial T}=F \frac{4 m T}{T^{2}-X^{2}} \tag{14}\\
\frac{\partial t}{\partial X} & =\frac{4 m T}{T^{2}-X^{2}} & \frac{\partial r}{\partial X}=\frac{\partial r}{\partial r *} \frac{\partial r *}{\partial X}=F \frac{4 m X}{X^{2}-T^{2}}
\end{align*}
$$

Then it is straightforward to compute the Schwarzschild metric starting from the old (t, r)-coordinate and we get

$$
\begin{align*}
d s^{2} & =-f d t^{2}+f^{-1} d r^{2}+r^{2} d \Omega^{2} \\
& =-f\left(\frac{\partial t}{\partial T} d T+\frac{\partial t}{\partial X} d X\right)^{2}+f^{-1}\left(\frac{\partial r}{\partial T} d T+\frac{\partial r}{\partial X} d X\right)^{2}+r^{2} d \Omega^{2} \\
& =\frac{16 m^{2} f}{\left(X^{2}-T^{2}\right)^{2}}\left[-(X d T-T d X)^{2}+(-T d T+X d X)^{2}\right]+r^{2} d \Omega^{2} \\
& =\frac{16 m^{2} f}{\left(X^{2}-T^{2}\right)}\left[-d T^{2}+d X^{2}\right]+r^{2} d \Omega^{2} \\
& =\frac{32 m^{3}}{r} \mathrm{e}^{-r / 2 m}\left[-d T^{2}+d X^{2}\right]+r^{2} d \Omega^{2} \tag{15}
\end{align*}
$$

where in the last step we have used (12).
2. Kruskal Coordinates for the Schwarzschild Space-Time: Solution II (MASSAGING THE METRIC INTO A CONVENIENT FORM)

The previous derivation may make you wonder how on earth one came up with a coordinate transformation like (11) in the first place. Here is a pedestrian way towards guessing that this might be a good transformation:

Write the Schwarzschild metric as

$$
\begin{equation*}
d s^{2}=(1-2 m / r)\left[-d t^{2}+d r^{* 2}\right]+r^{2} d \Omega^{2}=(1-2 m / r)[-d u d v]+r(u, v)^{2} d \Omega^{2} \tag{16}
\end{equation*}
$$

where $r^{*}=r+2 m \log (r / 2 m-1)$ is the tortoise coordinate, and $v=t+r^{*}$, $u=t-r^{*}$ are the "advanced" and "retarded" Eddington-Finkelstein coordinates. Now note that

$$
\begin{equation*}
\frac{v-u}{4 m}=\frac{r}{2 m}+\log \left(\frac{r}{2 m}-1\right), \tag{17}
\end{equation*}
$$

so that

$$
\begin{equation*}
1-\frac{2 m}{r}=\frac{2 m}{r}\left(\frac{r}{2 m}-1\right)=\frac{2 m}{r} \mathrm{e}^{-r / 2 m_{\mathrm{e}}(v-u) / 4 m} \tag{18}
\end{equation*}
$$

Thus the metric is

$$
\begin{equation*}
d s^{2}=\frac{2 m}{r} \mathrm{e}^{-r / 2 m}\left(\mathrm{e}^{v / 4 m} d v\right)\left(-\mathrm{e}^{-u / 4 m} d u\right)+r(u, v)^{2} d \Omega^{2} . \tag{19}
\end{equation*}
$$

Therefore it is natural to introduce

$$
\begin{equation*}
V=\mathrm{e}^{v / 4 m} \quad, \quad U=-\mathrm{e}^{-u / 4 m}, \tag{20}
\end{equation*}
$$

and T and X via $V=T+X, U=T-X$, so that

$$
\begin{align*}
d s^{2} & =-\frac{32 m^{3}}{r} \mathrm{e}^{-r / 2 m} d U d V+r(u, v)^{2} d \Omega^{2} \\
& =\frac{32 m^{3}}{r} \mathrm{e}^{-r / 2 m}\left[-d T^{2}+d X^{2}\right]+r(T, X)^{2} d \Omega^{2} \tag{21}
\end{align*}
$$

