SOLUTIONS TO ASSIGNMENTS 05

1. TENSOR ANALYSIS II: THE COVARIANT DERIVATIVE

(a)

()

Consider the scalar A,V" and take its covariant derivative. Since it is a
scalar, its covariant and partial derivatives agree, and since both satisfy the
Leibniz rule one has
V(A V) =0,(A V") =A,0,VY +VY0,A, )
=AV,V'+V'V,A,
This implies
VV,A, =VY0,A, + A0,V — ANV, VY
=VY0,A, + A0, VY — A, (0, VY +T,V")
v v v A v
=VY0,A, — A L,,VP =VY0,A, — AT,V
= V.4, =0,4,-T), A\

(2)

the last implication following because this has to be true for any V".
Since A, = J, A, and 0y = Jﬁ,@u, one has
Ay — OpAy = Jﬁ,@u(J,f/A,,)
= JL‘, 0 Ay, + AVJ;‘,BMJI‘,’, (3)
= Jg, v OuAy +Avd

Thus this is not a tensor, but since the last term is symmetric in the free
indices,
L )
Hv ay,u/ ayl/ Vi
(partial derivatives commute), it drops out when one takes the antisymmetric

part, i.e. the curl,
QLA,, — al,Au — GM/A,/ — ay/A,/ = Jﬁ/ JZ/((?“AV — 6,,Aﬂ) (5)

Because the Christoffel symbols are symmetric in their lower indices, they
always drop out of the anti-symmetrised derivatives of anti-symmetric co-

variant tensors. In the present (simplest) case of covectors, one has
Vudy = VA = 0,A, —T), Ay — ,A, + T3, Ay = 0,4, — 9,A, . (6)

e Argument by direct calculation: see lecture notes section 4.4.

e Alternative argument: Since Vg, is a tensor, we can choose any co-
ordinate system we like to establish if this tensor is zero or not at a
given point . Choose an inertial coordinate system at x. Then the par-
tial derivatives of the metric and the Christoffel symbols are zero there.
Therefore the covariant derivative of the metric is zero. Since Vg, is

a tensor, this is then true in every coordinate system.



2. TENSOR ANALYSIS III: THE COVARIANT DIVERGENCE

(a)

First we compute I’Z)\ with the definition :

1

FZ)\ = §gup(au9p)\ + a)\gup - 8pgu>\)
1

= 5(079px + 9" O\gup — 9" gua)

1
= §gﬂpakgup (7)

Then, we use the relation g~ 10yg = " Orguw to find that :

1

Tin = §gupakgup

1

-1
- 24719
59 g

— g 29,4712 (8)
where in the last equality we used the fact that : dygt1/2 = %9_1/28)\9.

We can now compute the covariant divergence :

V' = 9"+ TP
= 9t + JPg 29,gT1/2
g 20,(g"2I") (9)

and

V¥ = 0, F" + T FPY + T FI
= O, + 1T, F™
_ OHF“” + Fpl/gfl/2apg+1/2
g 20" P Fm) (10)
where the last term in the first equation vanishes because an antisymmetric
tensor (F#7) is contracted with a symmetric object (I'},). More precisely,
: : v _ 1l(mwv v _ 1 v
if we rewrite I';,, = 5(I'},, + I';,) and F* = 3(FM° — FPH) then I} FHP
contains 4 terms and relabelling two of them by the exchange of the indices

1 <> p we see that everything vanishes.

To calculate the Laplacian, we just need the metric,

1 0 0
ds? = dr* +r*(d6* +sin?0d¢?) <= (gap) = | 0 72 0 (11)
0 0 r2sin?6
its inverse,
0 0
(¢*") = [0 r2 0 (12)
0 0 7 2(sinf)=2



and its determinant,

g=rsin?0 = \/§:T2sin9

Then one calculates

oo

1

~ 1256
1

~ 1256

=1720,(r*0,®) + r* ((sin6) "' Oy (sin 095 ®) + (sin ) ">0;P)

Do (12 sin 0g*P 93)

(0,(r* sin 00, @) + Op(sin 09®) + 0 ((sin 0) "' 9p®))

This can now be rewritten in many ways, e.g. as

D:a§+2ar+Agz
r r

Age = ——0u(sin 0g™)

S2_sin9abmg b

(0, ¢)) the Laplace operator on the unit 2-sphere.

(13)



