
Solutions to Assignments 05

1. Tensor Analysis II: the Covariant Derivative

(a) Consider the scalar AνV
ν and take its covariant derivative. Since it is a

scalar, its covariant and partial derivatives agree, and since both satisfy the

Leibniz rule one has

∇µ(AνV
ν) = ∂µ(AνV

ν) = Aν∂µV
ν + V ν∂µAν

= Aν∇µV
ν + V ν∇µAν

(1)

This implies

V ν∇µAν = V ν∂µAν +Aν∂µV
ν −Aν∇µV

ν

= V ν∂µAν +Aν∂µV
ν −Aν(∂µV

ν + Γν
µρV

ρ)

= V ν∂µAν −AνΓ
ν
µρV

ρ = V ν∂µAν −AλΓ
λ
µνV

ν

⇒ ∇µAν = ∂µAν − Γλ
µνAλ

(2)

the last implication following because this has to be true for any V ν .

(b) Since Aν′ = Jν
ν′Aν and ∂µ′ = J

µ
µ′∂µ, one has

∂µAν → ∂µ′Aν′ = J
µ
µ′∂µ(J

ν
ν′Aν)

= J
µ
µ′J

ν
ν′∂µAν +AνJ

µ
µ′∂µJ

ν
ν′

= J
µ
µ′J

ν
ν′∂µAν +AνJ

ν
µ′ν′ .

(3)

Thus this is not a tensor, but since the last term is symmetric in the free

indices,

Jν
µ′ν′ =

∂2xν

∂yµ
′

∂yν
′
= Jν

ν′µ′ (4)

(partial derivatives commute), it drops out when one takes the antisymmetric

part, i.e. the curl,

∂µAν − ∂νAµ → ∂µ′Aν′ − ∂ν′Aµ′ = J
µ
µ′J

ν
ν′(∂µAν − ∂νAµ) (5)

Because the Christoffel symbols are symmetric in their lower indices, they

always drop out of the anti-symmetrised derivatives of anti-symmetric co-

variant tensors. In the present (simplest) case of covectors, one has

∇µAν −∇νAµ = ∂µAν − Γλ
µνAλ − ∂νAµ + Γλ

νµAλ = ∂µAν − ∂νAµ . (6)

(c) • Argument by direct calculation: see lecture notes section 4.4.

• Alternative argument: Since ∇µgνλ is a tensor, we can choose any co-

ordinate system we like to establish if this tensor is zero or not at a

given point x. Choose an inertial coordinate system at x. Then the par-

tial derivatives of the metric and the Christoffel symbols are zero there.

Therefore the covariant derivative of the metric is zero. Since ∇µgνλ is

a tensor, this is then true in every coordinate system.
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2. Tensor Analysis III: The Covariant Divergence

(a) First we compute Γµ
µλ with the definition :

Γµ
µλ =

1

2
gµρ(∂µgρλ + ∂λgµρ − ∂ρgµλ)

=
1

2
(∂ρgρλ + gµρ∂λgµρ − ∂µgµλ)

=
1

2
gµρ∂λgµρ (7)

Then, we use the relation g−1∂λg = gµν∂λgµν to find that :

Γµ
µλ =

1

2
gµρ∂λgµρ

=
1

2
g−1∂λg

= g−1/2∂λg
+1/2 (8)

where in the last equality we used the fact that : ∂λg
+1/2 = 1

2
g−1/2∂λg.

(b) We can now compute the covariant divergence :

∇µJ
µ = ∂µJ

µ + Γµ
µρJ

ρ

= ∂µJ
µ + Jρg−1/2∂ρg

+1/2

= g−1/2∂µ(g
1/2Jµ) (9)

and

∇µF
µν = ∂µF

µν + Γµ
µρF

ρν + Γν
µρF

µρ

= ∂µF
µν + Γµ

µρF
ρν

= ∂µF
µν + F ρνg−1/2∂ρg

+1/2

= g−1/2∂µ(g
1/2Fµν) (10)

where the last term in the first equation vanishes because an antisymmetric

tensor (Fµρ) is contracted with a symmetric object (Γν
µρ). More precisely,

if we rewrite Γν
µρ = 1

2
(Γν

µρ + Γν
ρµ) and Fµρ = 1

2
(Fµρ − F ρµ), then Γν

µρF
µρ

contains 4 terms and relabelling two of them by the exchange of the indices

µ ↔ ρ we see that everything vanishes.

(c) To calculate the Laplacian, we just need the metric,

ds2 = dr2 + r2(dθ2 + sin2 θdφ2) ⇔ (gαβ) =







1 0 0

0 r2 0

0 0 r2 sin2 θ






(11)

its inverse,

(gαβ) =







1 0 0

0 r−2 0

0 0 r−2(sin θ)−2






(12)
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and its determinant,

g = r4 sin2 θ ⇒ √
g = r2 sin θ (13)

Then one calculates

2Φ =
1

r2 sin θ
∂α(r

2 sin θgαβ∂βΦ)

=
1

r2 sin θ

(

∂r(r
2 sin θ∂rΦ) + ∂θ(sin θ∂θΦ) + ∂φ((sin θ)

−1∂θΦ)
)

= r−2∂r(r
2∂rΦ) + r−2

(

(sin θ)−1∂θ(sin θ∂θΦ) + (sin θ)−2∂2
φΦ

)

(14)

This can now be rewritten in many ways, e.g. as

2 = ∂2
r +

2

r
∂r +

∆S2

r2
(15)

with

∆S2 =
1

sin θ
∂a(sin θg

ab∂b) (16)

(xa = (θ, φ)) the Laplace operator on the unit 2-sphere.
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