Solutions to Assignments 06

- 1. Properties of the Riemann Curvature Tensor
 - (a) We show that the fourth symmetry follows from (I),(II) and (III):

$$R_{\alpha\beta\gamma\delta} = -(R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta}) = R_{\gamma\alpha\delta\beta} + R_{\delta\alpha\beta\gamma}$$

$$= -(R_{\gamma\delta\beta\alpha} + R_{\gamma\beta\alpha\delta}) - (R_{\delta\beta\gamma\alpha} + R_{\delta\gamma\alpha\beta})$$

$$= 2R_{\gamma\delta\alpha\beta} + R_{\beta\gamma\alpha\delta} + R_{\beta\delta\gamma\alpha}$$

$$= 2R_{\gamma\delta\alpha\beta} - R_{\beta\alpha\delta\gamma} = 2R_{\gamma\delta\alpha\beta} - R_{\alpha\beta\gamma\delta}$$

$$\Rightarrow R_{\alpha\beta\gamma\delta} = R_{\gamma\delta\alpha\beta}$$
(1)

(b) From (a) we directly deduce the symmetry of the Ricci tensor:

$$R_{\mu\nu} = R^{\rho}_{\ \mu\rho\nu} = R_{\rho\nu}^{\ \rho}_{\ \mu} = R^{\rho}_{\ \nu\rho\mu} = R_{\nu\mu} \tag{2}$$

(c) Writing \circlearrowleft for the cyclic permutations in (α, β, γ) and then using the third symmetry: $R^{\rho}_{\alpha\beta\gamma} + \circlearrowleft = 0$, we have:

$$[\nabla_{\alpha}, [\nabla_{\beta}, \nabla_{\gamma}]]V^{\lambda} + \circlearrowleft = \nabla_{\alpha}(R^{\lambda}_{\ \rho\beta\gamma}V^{\rho}) - R^{\lambda}_{\ \rho\beta\gamma}\nabla_{\alpha}V^{\rho} + R^{\rho}_{\ \alpha\beta\gamma}\nabla_{\rho}V^{\lambda} + \circlearrowleft$$

$$= \nabla_{\alpha}(R^{\lambda}_{\ \rho\beta\gamma})V^{\rho} + R^{\rho}_{\ \alpha\beta\gamma}\nabla_{\rho}V^{\lambda} + \circlearrowleft$$

$$= \nabla_{\alpha}(R^{\lambda}_{\ \rho\beta\gamma})V^{\rho} + \circlearrowleft$$

$$= g^{\lambda\mu} [\nabla_{\alpha}R_{\mu\nu\beta\gamma} + \circlearrowleft] V^{\nu} = 0$$
(3)

which gives the desired result.

(d) Contracting the Bianchi identity over the indices (μ, β) and (ν, α) one finds:

$$g^{\nu\alpha}g^{\mu\beta}\left[\nabla_{\alpha}R_{\mu\nu\beta\gamma} + \circlearrowleft\right] = g^{\nu\alpha}g^{\mu\beta}\left[\nabla_{\alpha}R_{\mu\nu\beta\gamma} + \nabla_{\beta}R_{\mu\nu\gamma\alpha} + \nabla_{\gamma}R_{\mu\nu\alpha\beta}\right]$$

$$= \nabla_{\alpha}R^{\alpha\beta}_{\ \beta\gamma} + \nabla_{\beta}R^{\alpha\beta}_{\ \gamma\alpha} + \nabla_{\gamma}R^{\alpha\beta}_{\ \alpha\beta}$$

$$= -\nabla_{\alpha}R^{\alpha}_{\ \gamma} - \nabla_{\beta}R^{\beta}_{\ \gamma} + \nabla_{\gamma}R$$

$$= -\nabla_{\alpha}\left[2R^{\alpha}_{\ \gamma} - \delta^{\alpha}_{\ \gamma}R\right] = 0 \tag{4}$$

And defining the *Einstein tensor* as $G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R$, we see that the contracted Bianchi identity (4) is equivalent to $\nabla^{\alpha}G_{\alpha\beta} = 0$ because:

$$\nabla^{\alpha} G_{\alpha\beta} = \nabla^{\alpha} (R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} R) = \frac{1}{2} \nabla_{\alpha} (2R^{\alpha}_{\ \beta} - g^{\alpha}_{\ \beta} R)$$
 (5)

so that $\nabla^{\alpha}G_{\alpha\beta} = 0 \iff \nabla_{\alpha}\left[2R^{\alpha}_{\ \gamma} - \delta^{\alpha}_{\ \gamma}R\right] = 0$ where we have use the fact that $g^{\alpha}_{\ \beta} = g^{\alpha\lambda}g_{\lambda\beta} = \delta^{\alpha}_{\ \beta}$ simply because $g^{\alpha\lambda}$ is the inverse of $g_{\alpha\lambda}$.

2. Curvature in 2 Dimensions

(a) Since the Ricci tensor is

$$R_{\alpha\beta} = R^{\gamma}_{\alpha\gamma\beta} = R^{1}_{\alpha1\beta} + R^{2}_{\alpha2\beta} \tag{6}$$

because of the anti-symmetry of the Riemann tensor in the last two indices one has $R_{11} = R_{121}^2$ etc. Then the scalar curvature is

$$R = g^{\alpha\beta}R_{\alpha\beta} = g^{11}R_{121}^2 + g^{12}R_{112}^1 + g^{21}R_{221}^2 + g^{22}R_{212}^1 . \tag{7}$$

Using

$$\left(g^{\alpha\beta}\right) = \frac{1}{g_{11}g_{22} - g_{12}g_{21}} \begin{pmatrix} g_{22} & -g_{12} \\ -g_{21} & g_{11} \end{pmatrix}$$
(8)

and

$$R_{1212} = g_{1\alpha} R_{212}^{\alpha} = g_{11} R_{212}^{1} + g_{12} R_{212}^{2}$$

$$\tag{9}$$

(and likewise for $R_{2112} = -R_{2121}$) one then finds

$$R = \frac{2}{g_{11}g_{22} - g_{12}g_{21}} R_{1212} . {10}$$

(b) From the Euler-Lagrange equations associated to the metric $ds^2=dx^2+e^{2x}dy^2$ one reads off the non-zero Christoffel symbols

$$\ddot{x} - e^{2x}\dot{y}^2 = 0 \quad \Rightarrow \quad \Gamma_{yy}^x = -e^{2x} \qquad \ddot{y} + 2\dot{x}\dot{y} = 0 \quad \Rightarrow \quad \Gamma_{xy}^y = 1 \quad . \tag{11}$$

Then

$$R_{xyxy} = g_{x\alpha} R^{\alpha}_{yxy} = R^{x}_{yxy} = \partial_{x} \Gamma^{x}_{yy} - \partial_{y} \Gamma^{x}_{yx} + \Gamma^{x}_{x\alpha} \Gamma^{\alpha}_{yy} - \Gamma^{x}_{y\alpha} \Gamma^{\alpha}_{yx}$$
$$= \partial_{x} \Gamma^{x}_{yy} - \Gamma^{x}_{yy} \Gamma^{y}_{yx} = -e^{2x}$$
(12)

and thus $R = 2g^{-1}(-e^{2x}) = -2$.

- 3. The Geodesic Deviation Equation (section 8.3)
 - (a) This is obvious (I hope) since from expansion of the deplaced equation to first order one gets

$$\Gamma^{\mu}_{\nu\lambda}(x+\delta x)\frac{d}{d\tau}(x^{\nu}+\delta x^{\nu})\frac{d}{d\tau}(x^{\lambda}+\delta x^{\lambda})$$

$$=\partial_{\rho}\Gamma^{\mu}_{\nu\lambda}(x)\delta x^{\rho}\frac{d}{d\tau}x^{\nu}\frac{d}{d\tau}x^{\lambda}+2\Gamma^{\mu}_{\nu\lambda}(x)\frac{d}{d\tau}x^{\nu}\frac{d}{d\tau}\delta x^{\lambda} \quad (13)$$

(the symmetry of the Christoffel symbols accounting for the factor of 2).

(b) Starting from (here I write $D/D\tau$ instead of D_{τ})

$$\frac{D}{D\tau}\delta x^{\mu} = \frac{d}{d\tau}\delta x^{\mu} + \Gamma^{\mu}_{\nu\lambda}\frac{dx^{\nu}}{d\tau}\delta x^{\lambda}$$
 (14)

one can calculate the 2nd derivative $D^2 \delta x^{\mu}/D\tau^2,$

$$\begin{split} \frac{D^2}{D\tau^2} \dot{x}^\mu &= \frac{d}{d\tau} \left[\delta \dot{x}^\mu + \Gamma^\mu_{\nu\rho} \dot{x}^\nu \delta x^\rho \right] + \Gamma^\mu_{\alpha\beta} \dot{x}^\alpha \left[\delta \dot{x}^\beta + \Gamma^\beta_{\nu\rho} \dot{x}^\nu \delta x^\rho \right] \\ &= \delta \ddot{x}^\mu + (\partial_\lambda \Gamma^\mu_{\nu\rho}) \dot{x}^\nu \dot{x}^\lambda \delta x^\rho + \Gamma^\mu_{\nu\rho} \ddot{x}^\nu \delta x^\rho + 2 \Gamma^\mu_{\nu\rho} \dot{x}^\nu \delta \dot{x}^\rho \\ &+ \Gamma^\mu_{\lambda\beta} \Gamma^\beta_{\nu\rho} \dot{x}^\lambda \dot{x}^\nu \delta x^\rho \end{split} \tag{15}$$

Subtracting from this the term $R^{\mu}_{\ \nu\lambda\rho}\dot{x}^{\nu}\dot{x}^{\lambda}\delta x^{\rho}$ and using the geodesic equation to eliminate \ddot{x}^{ν} , one finds the equation

$$\frac{d^2}{d\tau^2}\delta x^{\mu} + 2\Gamma^{\mu}_{\nu\lambda}(x)\frac{d}{d\tau}x^{\nu}\frac{d}{d\tau}\delta x^{\lambda} + \partial_{\rho}\Gamma^{\mu}_{\nu\lambda}(x)\delta x^{\rho}\frac{d}{d\tau}x^{\nu}\frac{d}{d\tau}x^{\lambda} = 0$$
 (16)