Solutions to Assignments 06

1. Properties of the Riemann Curvature Tensor

(a) We show that the fourth symmetry follows from (I),(II) and (III):

$$
\begin{align*}
R_{\alpha \beta \gamma \delta} & =-\left(R_{\alpha \delta \beta \gamma}+R_{\alpha \gamma \delta \beta}\right)=R_{\gamma \alpha \delta \beta}+R_{\delta \alpha \beta \gamma} \\
& =-\left(R_{\gamma \delta \beta \alpha}+R_{\gamma \beta \alpha \delta}\right)-\left(R_{\delta \beta \gamma \alpha}+R_{\delta \gamma \alpha \beta}\right) \\
& =2 R_{\gamma \delta \alpha \beta}+R_{\beta \gamma \alpha \delta}+R_{\beta \delta \gamma \alpha} \\
& =2 R_{\gamma \delta \alpha \beta}-R_{\beta \alpha \delta \gamma}=2 R_{\gamma \delta \alpha \beta}-R_{\alpha \beta \gamma \delta} \\
& \Rightarrow R_{\alpha \beta \gamma \delta}=R_{\gamma \delta \alpha \beta} \tag{1}
\end{align*}
$$

(b) From (a) we directly deduce the symmetry of the Ricci tensor :

$$
\begin{equation*}
R_{\mu \nu}=R^{\rho}{ }_{\mu \rho \nu}=R_{\rho \nu}{ }^{\rho}{ }_{\mu}=R^{\rho}{ }_{\nu \rho \mu}=R_{\nu \mu} \tag{2}
\end{equation*}
$$

(c) Writing \circlearrowleft for the cyclic permutations in (α, β, γ) and then using the third symmetry : $R_{\alpha \beta \gamma}^{\rho}+\circlearrowleft=0$, we have :

$$
\begin{align*}
{\left[\nabla_{\alpha},\left[\nabla_{\beta}, \nabla_{\gamma}\right]\right] V^{\lambda}+\circlearrowleft } & =\nabla_{\alpha}\left(R_{\rho \beta \gamma}^{\lambda} V^{\rho}\right)-R_{\rho \beta \gamma}^{\lambda} \nabla_{\alpha} V^{\rho}+R_{\alpha \beta \gamma}^{\rho} \nabla_{\rho} V^{\lambda}+\circlearrowleft \\
& =\nabla_{\alpha}\left(R_{\rho \beta \gamma}^{\lambda}\right) V^{\rho}+R_{\alpha \beta \gamma}^{\rho} \nabla_{\rho} V^{\lambda}+\circlearrowleft \\
& =\nabla_{\alpha}\left(R_{\rho \beta \gamma}^{\lambda}\right) V^{\rho}+\circlearrowleft \\
& =g^{\lambda \mu}\left[\nabla_{\alpha} R_{\mu \nu \beta \gamma}+\circlearrowleft\right] V^{\nu}=0 \tag{3}
\end{align*}
$$

which gives the desired result.
(d) Contracting the Bianchi identity over the indices (μ, β) and (ν, α) one finds :

$$
\begin{align*}
g^{\nu \alpha} g^{\mu \beta}\left[\nabla_{\alpha} R_{\mu \nu \beta \gamma}+\circlearrowleft\right] & =g^{\nu \alpha} g^{\mu \beta}\left[\nabla_{\alpha} R_{\mu \nu \beta \gamma}+\nabla_{\beta} R_{\mu \nu \gamma \alpha}+\nabla_{\gamma} R_{\mu \nu \alpha \beta}\right] \\
& =\nabla_{\alpha} R^{\alpha \beta}{ }_{\beta \gamma}+\nabla_{\beta} R^{\alpha \beta}{ }_{\gamma \alpha}+\nabla_{\gamma} R^{\alpha \beta}{ }_{\alpha \beta} \\
& =-\nabla_{\alpha} R^{\alpha}{ }_{\gamma}-\nabla_{\beta} R^{\beta}{ }_{\gamma}+\nabla_{\gamma} R \\
& =-\nabla_{\alpha}\left[2 R^{\alpha}{ }_{\gamma}-\delta_{\gamma}^{\alpha} R\right]=0 \tag{4}
\end{align*}
$$

And defining the Einstein tensor as $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R$, we see that the contracted Bianchi identity (4) is equivalent to $\nabla^{\alpha} G_{\alpha \beta}=0$ because :

$$
\begin{equation*}
\nabla^{\alpha} G_{\alpha \beta}=\nabla^{\alpha}\left(R_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} R\right)=\frac{1}{2} \nabla_{\alpha}\left(2 R^{\alpha}{ }_{\beta}-g_{\beta}^{\alpha} R\right) \tag{5}
\end{equation*}
$$

so that $\nabla^{\alpha} G_{\alpha \beta}=0 \Leftrightarrow \nabla_{\alpha}\left[2 R^{\alpha}{ }_{\gamma}-\delta_{\gamma}^{\alpha} R\right]=0$ where we have use the fact that $g^{\alpha}{ }_{\beta}=g^{\alpha \lambda} g_{\lambda \beta}=\delta^{\alpha}{ }_{\beta}$ simply because $g^{\alpha \lambda}$ is the inverse of $g_{\alpha \lambda}$.
2. Curvature in 2 Dimensions
(a) Since the Ricci tensor is

$$
\begin{equation*}
R_{\alpha \beta}=R_{\alpha \gamma \beta}^{\gamma}=R_{\alpha 1 \beta}^{1}+R_{\alpha 2 \beta}^{2} \tag{6}
\end{equation*}
$$

because of the anti-symmetry of the Riemann tensor in the last two indices one has $R_{11}=R_{121}^{2}$ etc. Then the scalar curvature is

$$
\begin{equation*}
R=g^{\alpha \beta} R_{\alpha \beta}=g^{11} R_{121}^{2}+g^{12} R_{112}^{1}+g^{21} R_{221}^{2}+g^{22} R_{212}^{1} . \tag{7}
\end{equation*}
$$

Using

$$
\left(g^{\alpha \beta}\right)=\frac{1}{g_{11} g_{22}-g_{12} g_{21}}\left(\begin{array}{cc}
g_{22} & -g_{12} \tag{8}\\
-g_{21} & g_{11}
\end{array}\right)
$$

and

$$
\begin{equation*}
R_{1212}=g_{1 \alpha} R_{212}^{\alpha}=g_{11} R_{212}^{1}+g_{12} R_{212}^{2} \tag{9}
\end{equation*}
$$

(and likewise for $R_{2112}=-R_{2121}$) one then finds

$$
\begin{equation*}
R=\frac{2}{g_{11} g_{22}-g_{12} g_{21}} R_{1212} . \tag{10}
\end{equation*}
$$

(b) From the Euler-Lagrange equations associated to the metric $d s^{2}=d x^{2}+$ $e^{2 x} d y^{2}$ one reads off the non-zero Christoffel symbols

$$
\begin{equation*}
\ddot{x}-\mathrm{e}^{2 x} \dot{y}^{2}=0 \quad \Rightarrow \quad \Gamma_{y y}^{x}=-\mathrm{e}^{2 x} \quad \ddot{y}+2 \dot{x} \dot{y}=0 \quad \Rightarrow \quad \Gamma_{x y}^{y}=1 \tag{11}
\end{equation*}
$$

Then

$$
\begin{align*}
R_{x y x y}=g_{x \alpha} R_{y x y}^{\alpha}=R_{y x y}^{x} & =\partial_{x} \Gamma_{y y}^{x}-\partial_{y} \Gamma_{y x}^{x}+\Gamma_{x \alpha}^{x} \Gamma_{y y}^{\alpha}-\Gamma_{y \alpha}^{x} \Gamma_{y x}^{\alpha} \\
& =\partial_{x} \Gamma_{y y}^{x}-\Gamma_{y y}^{x} \Gamma_{y x}^{y}=-\mathrm{e}^{2 x} \tag{12}
\end{align*}
$$

and thus $R=2 g^{-1}\left(-\mathrm{e}^{2 x}\right)=-2$.

3. The Geodesic Deviation Equation (section 8.3)

(a) This is obvious (I hope) since from expansion of the deplaced equation to first order one gets

$$
\begin{align*}
\Gamma_{\nu \lambda}^{\mu}(x+\delta x) \frac{d}{d \tau}\left(x^{\nu}+\right. & \left.\delta x^{\nu}\right) \frac{d}{d \tau}\left(x^{\lambda}+\delta x^{\lambda}\right) \\
& =\partial_{\rho} \Gamma^{\mu}{ }_{\nu \lambda}(x) \delta x^{\rho} \frac{d}{d \tau} x^{\nu} \frac{d}{d \tau} x^{\lambda}+2 \Gamma^{\mu}{ }_{\nu \lambda}(x) \frac{d}{d \tau} x^{\nu} \frac{d}{d \tau} \delta x^{\lambda} \tag{13}
\end{align*}
$$

(the symmetry of the Christoffel symbols accounting for the factor of 2).
(b) Starting from (here I write $D / D \tau$ instead of D_{τ})

$$
\begin{equation*}
\frac{D}{D \tau} \delta x^{\mu}=\frac{d}{d \tau} \delta x^{\mu}+\Gamma_{\nu \lambda}^{\mu} \frac{d x^{\nu}}{d \tau} \delta x^{\lambda} \tag{14}
\end{equation*}
$$

one can calculate the 2nd derivative $D^{2} \delta x^{\mu} / D \tau^{2}$,

$$
\begin{align*}
\frac{D^{2}}{D \tau^{2}} \dot{x}^{\mu} & =\frac{d}{d \tau}\left[\delta \dot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \delta x^{\rho}\right]+\Gamma^{\mu}{ }_{\alpha \beta} \dot{x}^{\alpha}\left[\delta \dot{x}^{\beta}+\Gamma_{\nu \rho}^{\beta} \dot{x}^{\nu} \delta x^{\rho}\right] \\
& =\delta \ddot{x}^{\mu}+\left(\partial_{\lambda} \Gamma^{\mu}{ }_{\nu \rho}\right) \dot{x}^{\nu} \dot{x}^{\lambda} \delta x^{\rho}+\Gamma^{\mu}{ }_{\nu \rho} \ddot{x}^{\nu} \delta x^{\rho}+2 \Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \delta \dot{x}^{\rho} \tag{15}\\
& +\Gamma_{\lambda \beta}^{\mu} \Gamma^{\beta}{ }_{\nu \rho} \dot{x}^{\lambda} \dot{x}^{\nu} \delta x^{\rho}
\end{align*}
$$

Subtracting from this the term $R_{\nu \lambda \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\lambda} \delta x^{\rho}$ and using the geodesic equation to eliminate \ddot{x}^{ν}, one finds the equation

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} \delta x^{\mu}+2 \Gamma^{\mu}{ }_{\nu \lambda}(x) \frac{d}{d \tau} x^{\nu} \frac{d}{d \tau} \delta x^{\lambda}+\partial_{\rho} \Gamma^{\mu}{ }_{\nu \lambda}(x) \delta x^{\rho} \frac{d}{d \tau} x^{\nu} \frac{d}{d \tau} x^{\lambda}=0 \tag{16}
\end{equation*}
$$

