SOLUTIONS TO ASSIGNMENTS 05

1. TENSOR ANALYSIS III: THE COVARIANT DIVERGENCE

a) First we compute I'", with the definition :
uA
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= §gupa>\gup (1)

Then, we use the relation g~ 19yg = g"*d)g,, to find that :
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where in the last equality we used the fact that : dygT1/2 = %g‘l/QaAg.

(b) We can now compute the covariant divergence :

V' = 9"+ T TP
= OuJ"+ JPg 120,92
g~ 0u(g"2 ") (3)

and

VPR = 9 PP LTl PP TV PR
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where the last term in the first equation vanishes because an antisymmetric
tensor (F#*) is contracted with a symmetric object (I'};,). More precisely,
. . _ 1 _ 1

if we rewrite I';,, = 5(I'),, + I'},) and F* = 5(FM — FP!) then I, FH°
contains 4 terms and relabelling two of them by the exchange of the indices

1 <> p we see that everything vanishes.

(¢) To calculate the Laplacian, we just need the metric,

ds? = dr? + r*(d6* +sin® 0d¢*) & (gap) = | 0 12 0 (5)



its inverse,

and its determinant,

g=rlsin?0 = Jg=r%sind (7)
Then one calculates
1 2 af
D(I) = m@a(r S1n9g 86(1))
_ 1 2 : o)L (8)
= 55 (0r(r* sin 00, @) + Dy (sin 09y P@) + Oy((sin ) ™' 9y ®))

=1r720,(r?0,®) + 1% ((sin 0) "9y (sin #0p®) + (sin 0)*283;1))

This can now be rewritten in many ways, e.g. as

2 Age
OF + =0 + =3 (9)

with |
Age = —— 0,y (sin 0g®y) (10)

sin 0
(z® = (0, ¢)) the Laplace operator on the unit 2-sphere.

Remark: This calculation evidently generalises to any dimension. Thus in spher-

ical coordinates in which the Euclidean metric has the form
ds? = dr* 4 r?dQ? (11)

(with d©2 the line element on the unit n-sphere), the Laplace operator on R"*!

takes the form
ASn
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m:af+;ar+r—2 (12)

. KRUSKAL COORDINATES FOR THE SCHWARZSCHILD SPACE-TIME: SOLUTION I
(DIRECT CALCULATION USING THE COORDINATE TRANSFORMATION)

To compute the Schwarzschild metric in the new (X, T)-coordinates, it is useful
to consider the two expression ¢(X,T") and 7*(X,T). To find these we first rewrite
(X,T) as

X = el /4m cosh(t/4m) , T = o /4m sinh(t/4m) . (13)

This leads in particular to

oT/2m

X272 _ G r/2m _ jr/2m (L—l) —rf(r) (14)
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which is a way to express r implicitly (f(r) = (0r/0r*) =1 —2m/r). Now, from
(13) it also follows that

t =4matanh (T/X) , r*=2mlog(X*-1T7) . (15)

This allows us to compute the partial derivative we will need:

ot AmX or B or Orx B AmT
T~ X2_T12 T~ Or+x 0T T2 — X2
(16)
ot AmT or B or Orx B dmX
X  T2_ X2 0X  Or«0X = X2-T2

Then it is straightforward to compute the Schwarzschild metric starting from the

old (t,r)-coordinate and we get

ds®> = —fdt® + f~ldr? + r2dQ?
B ot or or o o
=—f <dT + aXdX> +f- (dT + aXdX) r2dQ
16m?
_ (XZ’—mzf?V [_ (XdT — TdX)? + (—TdT + XdX)ﬂ + r2d0?
1 2
- (Xgmjf;) [—dT? + dX?] + r2d?
32m? —r/2m 2 2 2 102
=" ¢ [—dT? + dX?] + r*dQ (17)
.

where in the last step we have used (14).
. KRUSKAL COORDINATES FOR THE SCHWARZSCHILD SPACE-TIME: SOLUTION II
(MASSAGING THE METRIC INTO A CONVENIENT FORM)

The previous derivation may make you wonder how on earth one came up with
a coordinate transformation like (13) in the first place. Here is a pedestrian way

towards guessing that this might be a good transformation:

Write the Schwarzschild metric as
ds® = (1 —2m/r)[—dt* + dr*?] +r2dQ* = (1 — 2m/7)[—du dv] 4 r(u,v)*dQ* (18)

where r* = r 4+ 2mlog(r/2m — 1) is the tortoise coordinate, and v = t + r*,
u =t —7r* are the “advanced” and “retarded” Eddington-Finkelstein coordinates.
Now note that

”4m“=ﬁ+1og(%—1) : (19)
so that
1_2;’”:2&<L_1) _2m —r/2m (v —u)/4m (20)
T r \2m T
Thus the metric is
ds* = 2Tme—r/2m <ev/4mdv) (—e _u/4mdu) + 7(u,v)%d0? . (21)
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Therefore it is natural to introduce

V = eV/4m U= _e—u/4m

)

and T'and X via V =T+ X,U =T — X, so that

2m3 _
ds2 = —SE—r/2Maray 4o, 0)2d02
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= B —r/2m_ g2 | gx?) 4 (T, X)2d02 |

(22)



