
Solutions to Assignments 05

1. Tensor Analysis III: The Covariant Divergence

(a) First we compute Γµµλ with the definition :

Γµµλ =
1

2
gµρ(∂µgρλ + ∂λgµρ − ∂ρgµλ)

=
1

2
(∂ρgρλ + gµρ∂λgµρ − ∂µgµλ)

=
1

2
gµρ∂λgµρ (1)

Then, we use the relation g−1∂λg = gµν∂λgµν to find that :

Γµµλ =
1

2
gµρ∂λgµρ

=
1

2
g−1∂λg

= g−1/2∂λg
+1/2 (2)

where in the last equality we used the fact that : ∂λg
+1/2 = 1

2g
−1/2∂λg.

(b) We can now compute the covariant divergence :

∇µJµ = ∂µJ
µ + ΓµµρJ

ρ

= ∂µJ
µ + Jρg−1/2∂ρg

+1/2

= g−1/2∂µ(g1/2Jµ) (3)

and

∇µFµν = ∂µF
µν + ΓµµρF

ρν + ΓνµρF
µρ

= ∂µF
µν + ΓµµρF

ρν

= ∂µF
µν + F ρνg−1/2∂ρg

+1/2

= g−1/2∂µ(g1/2Fµν) (4)

where the last term in the first equation vanishes because an antisymmetric

tensor (Fµρ) is contracted with a symmetric object (Γνµρ). More precisely,

if we rewrite Γνµρ = 1
2(Γνµρ + Γνρµ) and Fµρ = 1

2(Fµρ − F ρµ), then ΓνµρF
µρ

contains 4 terms and relabelling two of them by the exchange of the indices

µ↔ ρ we see that everything vanishes.

(c) To calculate the Laplacian, we just need the metric,

ds2 = dr2 + r2(dθ2 + sin2 θdφ2) ⇔ (gαβ) =

1 0 0

0 r2 0

0 0 r2 sin2 θ

 (5)
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its inverse,

(gαβ) =

1 0 0

0 r−2 0

0 0 r−2(sin θ)−2

 (6)

and its determinant,

g = r4 sin2 θ ⇒ √
g = r2 sin θ (7)

Then one calculates

2Φ =
1

r2 sin θ
∂α(r2 sin θgαβ∂βΦ)

=
1

r2 sin θ

(
∂r(r

2 sin θ∂rΦ) + ∂θ(sin θ∂θΦ) + ∂φ((sin θ)−1∂θΦ)
)

= r−2∂r(r
2∂rΦ) + r−2

(
(sin θ)−1∂θ(sin θ∂θΦ) + (sin θ)−2∂2φΦ

) (8)

This can now be rewritten in many ways, e.g. as

2 = ∂2r +
2

r
∂r +

∆S2

r2
(9)

with

∆S2 =
1

sin θ
∂a(sin θg

ab∂b) (10)

(xa = (θ, φ)) the Laplace operator on the unit 2-sphere.

Remark: This calculation evidently generalises to any dimension. Thus in spher-

ical coordinates in which the Euclidean metric has the form

ds2 = dr2 + r2dΩ2
n (11)

(with dΩ2
n the line element on the unit n-sphere), the Laplace operator on Rn+1

takes the form

2 = ∂2r +
n

r
∂r +

∆Sn

r2
(12)

2. Kruskal Coordinates for the Schwarzschild Space-Time: Solution I

(direct calculation using the coordinate transformation)

To compute the Schwarzschild metric in the new (X,T )-coordinates, it is useful

to consider the two expression t(X,T ) and r∗(X,T ). To find these we first rewrite

(X,T ) as

X = er
∗/4m cosh(t/4m) , T = er

∗/4m sinh(t/4m) . (13)

This leads in particular to

X2 − T 2 = er
∗/2m = er/2m

( r

2m
− 1
)

= rf(r)
er/2m

2m
(14)
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which is a way to express r implicitly (f(r) = (∂r/∂r∗) = 1− 2m/r). Now, from

(13) it also follows that

t = 4m atanh (T/X) , r∗ = 2m log
(
X2 − T 2

)
. (15)

This allows us to compute the partial derivative we will need:

∂t

∂T
=

4mX

X2 − T 2

∂r

∂T
=

∂r

∂r∗
∂r∗
∂T

= F
4mT

T 2 −X2

∂t

∂X
=

4mT

T 2 −X2

∂r

∂X
=

∂r

∂r∗
∂r∗
∂X

= F
4mX

X2 − T 2

(16)

Then it is straightforward to compute the Schwarzschild metric starting from the

old (t, r)-coordinate and we get

ds2 = −fdt2 + f−1dr2 + r2dΩ2

= −f
(
∂t

∂T
dT +

∂t

∂X
dX

)2

+ f−1

(
∂r

∂T
dT +

∂r

∂X
dX

)2

+ r2dΩ2

=
16m2f

(X2 − T 2)2

[
− (XdT − TdX)2 + (−TdT +XdX)2

]
+ r2dΩ2

=
16m2f

(X2 − T 2)

[
−dT 2 + dX2

]
+ r2dΩ2

=
32m3

r
e−r/2m

[
−dT 2 + dX2

]
+ r2dΩ2 (17)

where in the last step we have used (14).

2. Kruskal Coordinates for the Schwarzschild Space-Time: Solution II

(massaging the metric into a convenient form)

The previous derivation may make you wonder how on earth one came up with

a coordinate transformation like (13) in the first place. Here is a pedestrian way

towards guessing that this might be a good transformation:

Write the Schwarzschild metric as

ds2 = (1− 2m/r)[−dt2 + dr∗2] + r2dΩ2 = (1− 2m/r)[−du dv] + r(u, v)2dΩ2 (18)

where r∗ = r + 2m log(r/2m − 1) is the tortoise coordinate, and v = t + r∗,

u = t− r∗ are the “advanced” and “retarded” Eddington-Finkelstein coordinates.

Now note that
v − u
4m

=
r

2m
+ log

( r

2m
− 1
)

, (19)

so that

1− 2m

r
=

2m

r

( r

2m
− 1
)

=
2m

r
e−r/2me (v − u)/4m . (20)

Thus the metric is

ds2 =
2m

r
e−r/2m

(
ev/4mdv

)(
−e−u/4mdu

)
+ r(u, v)2dΩ2 . (21)
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Therefore it is natural to introduce

V = ev/4m , U = −e−u/4m , (22)

and T and X via V = T +X,U = T −X, so that

ds2 = −32m3

r
e−r/2mdUdV + r(u, v)2dΩ2

=
32m3

r
e−r/2m[−dT 2 + dX2] + r(T,X)2dΩ2 . (23)
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