Solutions to Assignments 01

1. Coordinate Transformations and Metrics in Minkowski Space

(a) There are (at least) 2 ways to do this calculation. The longer one is to use the formula $g_{\mu \nu}=J_{\mu}^{a} J_{\nu}^{b} \eta_{a b}$ to compute the components of the metric in the new coordinates one by one:

$$
\begin{align*}
g_{T T} & =\eta_{a b} \frac{\partial \xi^{a}}{\partial T} \frac{\partial \xi^{b}}{\partial T}=-\left(\frac{\partial t}{\partial T}\right)^{2}+\left(\frac{\partial x}{\partial T}\right)^{2} \\
& =-X^{2} \cosh (T)^{2}+X^{2} \sinh (T)^{2}=-X^{2} \tag{1}\\
g_{T X} & =\eta_{a b} \frac{\partial \xi^{a}}{\partial T} \frac{\partial \xi^{b}}{\partial X}=-\frac{\partial t}{\partial T} \frac{\partial t}{\partial X}+\frac{\partial x}{\partial T} \frac{\partial x}{\partial X} \\
& =-X \cosh (T) \sinh (T)+X \sinh (T) \cosh (T)=0 \tag{2}\\
g_{X X} & =\eta_{a b} \frac{\partial \xi^{a}}{\partial X} \frac{\partial \xi^{b}}{\partial X}=-\left(\frac{\partial t}{\partial X}\right)^{2}+\left(\frac{\partial x}{\partial X}\right)^{2} \\
& =-\sinh (T)^{2}+\cosh (T)^{2}=1 \tag{3}
\end{align*}
$$

Thus, assembling the results, we can read off that the Minkowski line-element in Rindler coordinates takes the form

$$
\begin{equation*}
d s^{2}=-X^{2} d T^{2}+d X^{2} \tag{4}
\end{equation*}
$$

Alternatively (and this is frequently the calculationally more efficient way of proceeding, even though in the present example it makes hardly any difference), one can simply calculate $d t$ and $d x$ in terms of the new coordinates once and for all, and then plug the result into the line element to read off the components of the metric:

$$
\begin{align*}
t & =X \sinh T \quad, \quad x=X \cosh T \\
d t & =d X \sinh T+X \cosh T d T \quad, \quad d x=d X \cosh T+X \sinh T d T \\
d s^{2} & =-(d X \sinh T+X \cosh T d T)^{2}+(d X \cosh T+X \sinh T d T)^{2} \tag{5}\\
& =-X^{2} d T^{2}+d X^{2} .
\end{align*}
$$

(b) With

$$
\begin{equation*}
g^{\mu \nu}=\eta^{a b} J_{a}^{\mu} J_{b}^{\nu} \quad, \quad g_{\nu \lambda}=J_{\nu}^{c} J_{\lambda}^{d} \eta_{c d} \tag{6}
\end{equation*}
$$

we calculate, using $J_{b}^{\nu} J_{c}^{\nu}=\delta_{c}^{b}, \eta^{a b} \eta_{b d}=\delta_{d}^{b}$ etc.

$$
\begin{equation*}
g^{\mu \nu} g_{\nu \lambda}=\eta^{a b} J_{a}^{\mu} J_{b}^{\nu} J_{\nu}^{c} J_{\lambda}^{d} \eta_{c d}=\eta^{a b} J_{a}^{\mu} J_{\lambda}^{d} \eta_{b d}=J_{a}^{\mu} J_{\lambda}^{a}=\delta_{\lambda}^{\mu} \tag{7}
\end{equation*}
$$

2. Free Relativistic Particle in Arbitrary Coordinates

- From

$$
\begin{equation*}
g_{\mu \nu}=\eta_{a b} J_{\mu}^{a} J_{\nu}^{b} \tag{8}
\end{equation*}
$$

one deduces

$$
\begin{equation*}
g_{\mu \nu, \lambda}=\eta_{a b}\left(J_{\mu \lambda}^{a} J_{\nu}^{b}+J_{\mu}^{a} J_{\nu \lambda}^{b}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\mu \lambda}^{a}=\partial_{\lambda} J_{\mu}^{a}=\frac{\partial^{2} \xi^{a}}{\partial x^{\mu} \partial x^{\lambda}}=J_{\lambda \mu}^{a} . \tag{10}
\end{equation*}
$$

- Therefore one has

$$
\begin{align*}
\Gamma_{\mu \nu \lambda} & =\frac{1}{2}\left(g_{\mu \nu, \lambda}+g_{\mu \lambda, \nu}-g_{\nu \lambda, \mu}\right) \\
& =\frac{1}{2} \eta_{a b}\left(J_{\mu \lambda}^{a} J_{\nu}^{b}+J_{\mu}^{a} J_{\nu \lambda}^{b}+J_{\mu \nu}^{a} J_{\lambda}^{b}+J_{\mu}^{a} J_{\lambda \nu}^{b}-J_{\nu \mu}^{a} J_{\lambda}^{b}-J_{\nu}^{a} J_{\lambda \mu}^{b}\right) \tag{11}\\
& =\eta_{a b} J_{\mu}^{a} J_{\nu \lambda}^{b},
\end{align*}
$$

where the cancellations in passing to the last line arise from the symmetries $\eta_{a b}=\eta_{b a}, J_{\lambda \mu}^{b}=J_{\mu \lambda}^{b}$ etc.

- Thus (writing out everything in detail),

$$
\begin{align*}
\Gamma_{\nu \lambda}^{\mu} & =g^{\mu \rho} \Gamma_{\rho \nu \lambda}=\eta^{c d} J_{c}^{\mu} J_{d}^{\rho} \eta_{a b} J_{\rho}^{a} J_{\nu \lambda}^{b}=\eta^{c d} J_{c}^{\mu} \delta_{d}^{a} \eta_{a b} J_{\nu \lambda}^{b} \\
& =\eta^{c a} J_{c}^{\mu} \eta_{a b} J_{\nu \lambda}^{b}=\delta_{b}^{c} J_{c}^{\mu} J_{\nu \lambda}^{b}=J_{b}^{\mu} J_{\nu \lambda}^{b} \tag{12}
\end{align*}
$$

as was to be shown.

3. Geodesics

(a) With the Lagrangian

$$
\begin{equation*}
\mathcal{L}\left(x^{\mu}, \dot{x}^{\mu}\right)=\frac{1}{2} g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=\frac{1}{2} g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu} \tag{13}
\end{equation*}
$$

where $g_{\mu \nu}=g_{\mu \nu}\left(x^{\rho}\right)$ one computes

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial x^{\mu}} & =\frac{1}{2} \dot{x}^{\rho} \dot{x}^{\nu} \partial_{\mu} g_{\rho \nu} \tag{14}\\
\frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}} & =g_{\rho \nu} \dot{x}^{\rho} \frac{\partial}{\partial \dot{x}^{\mu}} \dot{x}^{\nu}=g_{\rho \nu} \dot{x}^{\rho} \delta_{\mu}^{\nu}=g_{\rho \mu} \dot{x}^{\rho} \tag{15}\\
\frac{d}{d \tau}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}\right) & =g_{\rho \mu} \ddot{x}^{\rho}+\dot{x}^{\rho} \dot{x}^{\nu} \partial_{\nu} g_{\rho \mu}=g_{\rho \mu} \ddot{x}^{\rho}+\frac{1}{2}\left(\dot{x}^{\rho} \dot{x}^{\nu} \partial_{\nu} g_{\rho \mu}+\dot{x}^{\nu} \dot{x}^{\rho} \partial_{\rho} g_{\nu \mu}\right) \tag{16}
\end{align*}
$$

Thus the Euler-Lagrange equations become

$$
\begin{align*}
{[\text { E.-L. }] } & =g_{\mu \rho} \ddot{x}^{\rho}+\frac{1}{2}\left(\partial_{\nu} g_{\rho \mu}+\partial_{\rho} g_{\nu \mu}-\partial_{\mu} g_{\rho \nu}\right) \dot{x}^{\nu} \dot{x}^{\rho} \tag{17}\\
& =g_{\mu \rho} \ddot{x}^{\rho}+\Gamma_{\mu \nu \rho} \dot{x}^{\rho} \dot{x}^{\nu}=0 \tag{18}
\end{align*}
$$

and they can be written in the usual (geodesic equation) form by multiplying by $g^{\lambda \mu}$ to move the index μ up:

$$
\begin{equation*}
g^{\lambda \mu}\left(g_{\mu \rho} \ddot{x}^{\rho}+\Gamma_{\mu \nu \rho} \dot{x}^{\rho} \dot{x}^{\nu}\right)=\ddot{x}^{\lambda}+\Gamma_{\nu \rho}^{\lambda} \dot{x}^{\rho} \dot{x}^{\nu}=0 \tag{19}
\end{equation*}
$$

(b) First we compute :

$$
\begin{equation*}
\frac{d}{d \tau} \mathcal{L}=\frac{1}{2} \frac{d}{d \tau} g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=\frac{1}{2}\left(2 g_{\mu \nu} \ddot{x}^{\mu} \dot{x}^{\nu}+\left(\dot{x}^{\rho} \partial_{\rho} g_{\mu \nu}\right) \dot{x}^{\mu} \dot{x}^{\nu}\right) \tag{20}
\end{equation*}
$$

From the definition of the Christoffel symbols $\Gamma_{\mu \nu \rho}$ one sees that if one symmetrises the 1 st and 2 nd index, 4 of the 6 terms cancel while 2 add up, leading to the useful identity

$$
\begin{equation*}
\partial_{\rho} g_{\mu \nu}=\Gamma_{\mu \nu \rho}+\Gamma_{\nu \mu \rho} . \tag{21}
\end{equation*}
$$

Using this identity together with the fact that $x^{\mu}(\tau)$ is a solution to the geodesic equation, which means that we also have

$$
\begin{equation*}
\ddot{x^{\mu}}=-\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho} \tag{22}
\end{equation*}
$$

leaves us with

$$
\begin{align*}
\frac{d}{d \tau} \mathcal{L} & =\frac{1}{2}\left(-2 g_{\mu \nu} \Gamma_{\lambda \rho}^{\mu} \dot{x}^{\lambda} \dot{x}^{\rho} \dot{x}^{\nu}+\dot{x}^{\rho}\left(\Gamma_{\mu \nu \rho}+\Gamma_{\nu \mu \rho}\right) \dot{x}^{\mu} \dot{x}^{\nu}\right) \tag{23}\\
& =\frac{1}{2}\left(-2 \Gamma_{\nu \lambda \rho} \dot{x}^{\lambda} \dot{x}^{\rho} \dot{x}^{\nu}+\left(\Gamma_{\mu \nu \rho}+\Gamma_{\nu \mu \rho}\right) \dot{x}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho}\right)=0 \tag{24}
\end{align*}
$$

which is obviously zero if we relabel the indices.
(c) The metric on the 2 -sphere is

$$
\begin{equation*}
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2}(\theta) d \phi^{2}\right) \tag{25}
\end{equation*}
$$

so that in the (θ, ϕ) coordinates we have :

$$
g_{\mu \nu}=R^{2}\left(\begin{array}{cc}
1 & 0 \tag{26}\\
0 & \sin (\theta)^{2}
\end{array}\right) \quad g^{\mu \nu}=R^{-2}\left(\begin{array}{cc}
1 & 0 \\
0 & \sin (\theta)^{-2}
\end{array}\right)
$$

Because $g_{\mu \nu}$ is diagonal and $g_{\mu \nu}=g_{\mu \nu}(\theta)$, the only non-vanishing contributions to the Christoffel symbols will come from terms involving $\partial_{\theta} g_{\phi \phi}$. Keeping this in mind, we first compute the Christoffel symbols with upper index θ,

$$
\begin{equation*}
\Gamma_{\nu \lambda}^{\theta}=\frac{1}{2} g^{\theta \theta}\left(\partial_{\lambda} g_{\theta \nu}+\partial_{\nu} g_{\theta \lambda}-\partial_{\theta} g_{\nu \lambda}\right)=-\frac{1}{2} g^{\theta \theta} \partial_{\theta} g_{\nu \lambda} \tag{27}
\end{equation*}
$$

and we see that the only non-vanishing term with θ on the top is $\Gamma_{\phi \phi}^{\theta}$:

$$
\begin{equation*}
\Gamma_{\phi \phi}^{\theta}=-\frac{1}{2} g^{\theta \theta} \partial_{\theta} g_{\phi \phi}=-\sin (\theta) \cos (\theta) \tag{28}
\end{equation*}
$$

Now if we choose ϕ to be on the top, we get

$$
\begin{equation*}
\Gamma_{\nu \lambda}^{\phi}=\frac{1}{2} g^{\phi \phi}\left(\partial_{\lambda} g_{\phi \nu}+\partial_{\nu} g_{\phi \lambda}-\partial_{\phi} g_{\nu \lambda}\right)=\frac{1}{2} g^{\phi \phi}\left(\partial_{\lambda} g_{\phi \nu}+\partial_{\nu} g_{\phi \lambda}\right) \tag{29}
\end{equation*}
$$

so that the only non-vanishing terms with ϕ on the top are $\Gamma_{\phi \theta}^{\phi}=\Gamma_{\theta \phi}^{\phi}$:

$$
\begin{equation*}
\Gamma_{\phi \theta}^{\phi}=\frac{1}{2} g^{\phi \phi} \partial_{\theta} g_{\phi \phi}=\frac{\cos (\theta)}{\sin (\theta)} \tag{30}
\end{equation*}
$$

With these Christoffel symbols we can now write down the geodesic equation $\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho}$ in the (θ, ϕ) coordinate. We find

$$
\begin{cases}\ddot{\theta}+\Gamma_{\phi \phi}^{\theta} \dot{\phi} \dot{\phi}=\ddot{\theta}-\sin (\theta) \cos (\theta) \dot{\phi} \dot{\phi}=0 & \mu=\theta \tag{31}\\ \ddot{\phi}+2 \Gamma_{\theta \phi}^{\phi} \dot{\theta} \dot{\phi}=\ddot{\phi}+2 \frac{\cos (\theta)}{\sin (\theta)} \dot{\theta} \dot{\phi}=0 & \mu=\phi\end{cases}
$$

Using the Euler-Lagrange equations with $\mathcal{L}=\frac{1}{2}\left(\dot{\theta}^{2}+\sin (\theta)^{2} \dot{\phi}^{2}\right)$, we get :

$$
\left\{\begin{array}{l}
\frac{d}{d \tau} \frac{\partial \mathcal{L}}{\partial \dot{\theta}}-\frac{\partial \mathcal{L}}{\partial \theta}=\frac{1}{2}\left(\frac{d}{d \tau} 2 \dot{\theta}-2 \sin (\theta) \cos (\theta) \dot{\phi}^{2}\right)=0 \tag{32}\\
\frac{d}{d \tau} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}-\frac{\partial \mathcal{L}}{\partial \phi}=\frac{1}{2} \frac{d}{d \tau}\left(2 \sin (\theta)^{2} \dot{\phi}\right)=\sin (\theta)^{2} \ddot{\phi}+2 \cos (\theta) \sin (\theta) \dot{\theta} \dot{\phi}=0
\end{array}\right.
$$

which are the same equations as in (31).
As discussed during the course, conversely one can simply use the EulerLagrange equations to read off all the non-zero components of the Christoffel symbol.
We can easily see that the great circles $(\theta(\tau), \phi(\tau))=\left(\tau, \phi_{0}\right)$ on S^{2} are solutions to the equations just found. It is indeed the case because for that particular solution ϕ is constant along a great circle, which implies $\ddot{\phi}=\dot{\phi}=0$ and simultaneously $\theta(\tau)=\tau$ so that $\ddot{\theta}$ vanishes. By looking at equation (19) or (20) we can see that every curve with $\ddot{\theta}=\ddot{\phi}=\dot{\phi}=0$ trivially satisfy both equations and therefore such curves are geodesics.

