
Solutions to Assignments 05

1. On the Klein-Gordon Field in a curved space-time

The action is

S[φ, gαβ] =

∫
√
gd4x L ≡ −1

2

∫
√
gd4x

(
gµν∂µφ∂νφ+m2φ2

)
(1)

and the energy-momentum tensor is

Tαβ = ∂αφ∂βφ+ gαβL (2)

(a) Variation of the mass term evidently gives rise to −
∫ √

gd4xm2φδφ, so we

focus on the kinetic term. Thinking of the partial derivatives in the action

as covariant derivatives, and using ∇αgµν = 0, ∇α
√
g = 0, one can integrate

by parts to one’s heart’s content as in Minkowski space to find

δS = −
∫
√
gd4x gµν∇µδφ∇νφ =

∫
√
gd4x gµν(∇µ∇νφ)δφ (3)

Combining the variations of the kinetic and mass terms, one deduces the

equation of motion (2−m2)φ = 0. If one works with the partial derivatives,

one of course finds the same equation, but this time with the Laplace operator

in the form
√
g2 = ∂α(

√
ggαβ∂β).

(b) To show that the energy-momentum tensor is covariantly conserved we will

use ∂µφ = ∇µφ, the commutativity ∇µ∇νφ = ∇ν∇µφ of the covariant

derivative on scalars, and the fact that φ is a solution to the Klein-Gordon

equation ∇µ∇µφ = m2φ, then the result follows:

∇µTµν = ∇µ(∂µφ∂νφ) +∇µ(gµνL)

= ∇µ(∂µφ∂νφ)− 1

2
∇ν(∂λφ∂

λφ+m2φ2)

= ∂νφ∇µ∂µφ+ ∂µφ∇µ∂νφ− ∂λφ∇ν∂
λφ−m2φ∇νφ

= ∂νφ m
2φ+ ∂µφ∇µ∇νφ− ∂λφ∇λ∇νφ−m2φ∇νφ

= 0 (4)

(c) The variation of the action with respect to the metric is

δS =

∫
d4x (δ(

√
g)L+

√
gδL) = −1

2

∫
d4x
√
g (gµνLδg

µν − 2δL) (5)

(valid for any Lagrangian L). Using δ(gµν∂µφ∂νφ) = (δgµν)∂µφ∂νφ, one finds

δS = −1

2

∫
d4x
√
g(gµνL+ ∂µφ∂νφ)δgµν = −1

2

∫
d4x
√
gTµνδg

µν (6)

as claimed.

1



2. On the Maxwell Equations in Curved Space-Time The action is

S[Aα, gαβ] =

∫
√
gd4x L = −1

4

∫
√
gd4xFαβF

αβ (7)

and the gauge-invariant and generally covariant energy momentum tensor is

Tαβ = FαγF
γ
β −

1
4gαβFγδF

γδ (8)

(a) The variation of the action with respect to the gauge field is

δS = −
∫
√
gd4x (∂µδAν)Fµν

= −
∫
d4x ∂µ(

√
gδAνF

µν) +

∫
d4x ∂µ(

√
gFµν)δAν (9)

where in the first line we have used the fact that there are 4 identical con-

tributions to the variation. Then we note that the first term in the second

line is a boundary term and vanishes because the variation vanishes on the

boundary. Now using
√
g∇µF

µν = ∂µ(
√
gFµν) we are left with

δS =

∫
√
gd4x (∇µF

µν)δAν (10)

which gives the equations of motion.

(b) We compute :

∇µT
µν = ∇µ(Fµ

λF
νλ − 1

4g
µνFλρF

λρ)

= (∇µF
µ
λ)F νλ + Fµ

λ∇µF
νλ − 1

2Fλρ∇νF λρ

= −JλF νλ + Fµλ

(
∇µF νλ − 1

2∇
νFµλ

)
= JλF

λν + 1
2Fµλ

(
∇µF νλ −∇µF λν −∇νFµλ

)
(11)

Then we rewrite the term 1
2Fµλ∇µF νλ in a different way by relabeling the

indices and using the anti-symmetry of Fµν :

1
2Fµλ∇µF νλ = 1

2Fλµ∇λF νµ = −1
2Fµλ∇λF νµ (12)

so that we can now use ∇[λFµν] = 0 to have at the end :

∇µT
µν = JλF

λν − 1
2Fµλ

(
∇λF νµ +∇µF λν +∇νFµλ

)
= JλF

λν (13)

(c) For the metric variation of the action, we can also use the general formula

(5). For the variation of the Lagrangian with respect to the metric, we note

that

δ(gµλgνρFµνFλρ) = 2(δgµλ)gνρFµνFλρ = 2(δgµν)gλρFµλFνρ = 2(δgµν)FµλF
λ
ν

(14)

and therefore −2δL = (δgµν)FµλF
λ
ν . Putting the pieces together one gets

(8).
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