SOLUTIONS TO ASSIGNMENTS 05

1. ON THE KLEIN-GORDON FIELD IN A CURVED SPACE-TIME

The action is

S[#, gasl = / Vodiz L= -1 / Vadtz (g 0,00, ¢ + m?¢?) (1)

and the energy-momentum tensor is

(a)

()

Taﬂ = aa¢aﬁ¢ + ga,BL (2)

Variation of the mass term evidently gives rise to — [ \/§d4xm2¢6¢, SO we
focus on the kinetic term. Thinking of the partial derivatives in the action
as covariant derivatives, and using Va9, = 0, Va,/g = 0, one can integrate

by parts to one’s heart’s content as in Minkowski space to find

05 = — / Vad'z ¢V 66V ¢ = / Vod'z ¢ (VuVug)ds  (3)

Combining the variations of the kinetic and mass terms, one deduces the
equation of motion (O —m?)¢ = 0. If one works with the partial derivatives,
one of course finds the same equation, but this time with the Laplace operator
in the form /g0 = 0,(,/g9*?95).

To show that the energy-momentum tensor is covariantly conserved we will
use 0,¢ = V,¢, the commutativity V,V,¢ = V,V, ¢ of the covariant
derivative on scalars, and the fact that ¢ is a solution to the Klein-Gordon
equation VAV ¢ = m?2¢, then the result follows:

VT = VH*(0u90,¢) + V*(guL)
= VHOu0,0) — 5Vu(0:60°6 + m??)
= 0,670, + 0,0V 0,0 — NGV, — PV,
= 9 m’¢ + 0upVHV,0 — DOV Vo — m*$V,0
- 0 (4)

The variation of the action with respect to the metric is
58 = / d*r (6(/9)L + /géL) = —1 / d*e\/g (g Log"” —26L)  (5)
(valid for any Lagrangian L). Using §(g"*0,¢0,¢) = (6g"")0,¢0, ¢, one finds

68 = _% /d43:\/§(guuL + 8ﬂ¢8,,q§)5g’w - _% /d4x\/§TuV59W (6)

as claimed.



2. ON THE MAXWELL EQUATIONS IN CURVED SPACE-TIME The action is
S[Aa, gag) = / Vod'z L= —1 / Vod'zF,gFP (7)
and the gauge-invariant and generally covariant energy momentum tensor is
Top = FavFﬁA/ - %gaﬁFwFWS (8)

(a) The variation of the action with respect to the gauge field is

5S = — / Jadiz (9,6A,) F™

= - / d*z 8,(\/g6 A, F") + / d*z 8,(\/gF"™)5 A, (9)

where in the first line we have used the fact that there are 4 identical con-
tributions to the variation. Then we note that the first term in the second
line is a boundary term and vanishes because the variation vanishes on the
boundary. Now using /gV, F* = 0,(,/gF"") we are left with

58 = / Vadtz (V,FH)5A, (10)
which gives the equations of motion.
(b) We compute :
VT = Vu(FAF" — 1g" F),F7)
= (VuFR)F" + PRV, F" — LF\ VP
— _J/\Fu)\ + FM)\ (VMFVA _ %VVFMA>
= BFY 4 SR (VIR VR 9 RR) (1)

Then we rewrite the term %Fw\V"F ¥A in a different way by relabeling the
indices and using the anti-symmetry of F,, :

SEDVIF? = $F\ VAP = —LF \V P (12)
so that we can now use V[, F},,; =0 to have at the end :
v, = N %FM (V’\F”” N /75 VVFMA>
= J\FV (13)

(¢) For the metric variation of the action, we can also use the general formula
(5). For the variation of the Lagrangian with respect to the metric, we note
that

5(guAngFuuF)\p) = 2(5gu)\)ngFuVF)\p = 2(5guy)gApF,u)\Fup = 2(59#V)Fy)\Fy)\
(14)
and therefore —20L = ((5g“”)FM>\Fl,)‘. Putting the pieces together one gets

().



