Solutions to Assignments 03

1. Tensor analysis I: Tensor Algebra

The invariance of $V(x)$ under coordinate transformations follows from the fact that partial derivatives are covectors and that they are contracted with a vector to form the field $V(x)$,

$$
\begin{equation*}
V^{\alpha} \partial_{\alpha}=J_{\mu}^{\alpha} J_{\alpha}^{\nu} V^{\mu} \partial_{\nu}=\delta_{\mu}^{\nu} V^{\mu} \partial_{\nu}=V^{\mu} \partial_{\mu} . \tag{1}
\end{equation*}
$$

Likewise for a covector:

$$
\begin{equation*}
d y^{\alpha}=J_{\nu}^{\alpha} d x^{\nu} \quad \Rightarrow \quad A_{\alpha} d y^{\alpha}=J_{\alpha}^{\mu} J_{\nu}^{\alpha} A_{\mu} d x^{\nu}=A_{\mu} d x^{\mu} \tag{2}
\end{equation*}
$$

2. Tensor Analysis II: the Covariant Derivative

Consider a covector $A_{\mu}(x)$ and a coordinate transformation $x^{\mu}=x^{\mu}\left(y^{\alpha}\right)$, with Jacobi matrix

$$
\begin{equation*}
J_{\alpha}^{\mu}=\frac{\partial x^{\mu}}{\partial y^{\alpha}} \tag{3}
\end{equation*}
$$

As a covector, A_{μ} transforms as $A_{\alpha}=J_{\alpha}^{\mu} A_{\mu}$, and therefore its derivative transforms as (using $\partial_{\beta}=J_{\beta}^{\nu} \partial_{\nu}$)

$$
\begin{equation*}
A_{\alpha}=J_{\alpha}^{\mu} A_{\mu} \quad \Rightarrow \quad \partial_{\beta} A_{\alpha}=J_{\alpha}^{\mu} J_{\beta}^{\nu} \partial_{\nu} A_{\mu}+\left(\partial_{\beta} J_{\alpha}^{\mu}\right) A_{\mu} . \tag{4}
\end{equation*}
$$

Because of

$$
\begin{equation*}
\partial_{\beta} J_{\alpha}^{\mu}=\frac{\partial^{2} x^{\mu}}{\partial y^{\alpha} \partial y^{\beta}}=\partial_{\alpha} J_{\beta}^{\mu} \tag{5}
\end{equation*}
$$

for the anti-symmetrised derivative one finds the tensorial transformation behaviour

$$
\begin{equation*}
\partial_{\beta} A_{\alpha}-\partial_{\alpha} A_{\beta}=J_{\alpha}^{\mu} J_{\beta}^{\nu}\left(\partial_{\nu} A_{\mu}-\partial_{\mu} A_{\nu}\right) \tag{6}
\end{equation*}
$$

Because the Christoffel symbols are symmetric in their lower indices, they always drop out of the anti-symmetrised derivatives of anti-symmetric covariant tensors. In the present (simplest) case of covectors, one has

$$
\begin{equation*}
\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}=\partial_{\mu} A_{\nu}-\Gamma_{\mu \nu}^{\lambda} A_{\lambda}-\partial_{\nu} A_{\mu}+\Gamma_{\nu \mu}^{\lambda} A_{\lambda}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{7}
\end{equation*}
$$

3. The Effective Geodesic Potential

Starting with the metric

$$
\begin{equation*}
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega^{2} \quad, \quad f(r)=1+2 \phi(r) \tag{8}
\end{equation*}
$$

one implements the following steps:

- the Lagrangian \mathcal{L} is conserved,

$$
\begin{equation*}
-f(r) \dot{t}^{2}+f(r)^{-1} \dot{r}^{2}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)=\epsilon \tag{9}
\end{equation*}
$$

where $\epsilon=-1,0$ for massive (massless) particles.

- by spherical symmetry, angular momentum is conserved, thus the motion is planar, and one can choosse the coordinates such that this motion takes place in the equatorial plane $\theta=\pi / 2, \dot{\theta}=0$, leading to

$$
\begin{equation*}
-f(r) \dot{t}^{2}+f(r)^{-1} \dot{r}^{2}+r^{2} \dot{\phi}^{2}=\epsilon \tag{10}
\end{equation*}
$$

- rotational and time-translational symmetry lead to the conserved quantities

$$
\begin{equation*}
E=f(r) \dot{t} \quad L=r^{2} \dot{\phi} \tag{11}
\end{equation*}
$$

(energy and angular momentum), and using these equations to eliminate \dot{t} and $\dot{\phi}$ from the Lagrangian, one finds

$$
\begin{equation*}
-E^{2} f(r)^{-1}+f(r)^{-1} \dot{r}^{2}+L^{2} / r^{2}=\epsilon \tag{12}
\end{equation*}
$$

Multiplying by $f(r)$ and rearranging, this gives

$$
\begin{equation*}
\dot{r}^{2}+f(r) L^{2} / r^{2}-\epsilon f(r)=E^{2} \tag{13}
\end{equation*}
$$

- This already has the desired form of an effective Newtonian potential equation, but it is typically more useful to separate the constant (asymptotically Minkowski) part of $f(r)$ from the rest. Thus, with $f(r)=1+2 \phi(r)$ one has

$$
\begin{equation*}
\frac{1}{2} \dot{r}^{2}+V_{e f f}(r)=E_{e f f} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{e f f}(r) \equiv V(r)+L^{2} / 2 r^{2}=\phi(r)\left(-\epsilon+L^{2} / r^{2}\right)+L^{2} / 2 r^{2} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{e f f}=\left(E^{2}+\epsilon\right) / 2 \tag{16}
\end{equation*}
$$

