SOLUTIONS TO ASSIGNMENTS 03

1. TENSOR ANALYSIS I: TENSOR ALGEBRA

The invariance of V(x) under coordinate transformations follows from the fact
that partial derivatives are covectors and that they are contracted with a vector

to form the field V(x),
V@0 = JyJAVHO, =6, V', = VHD, . (1)
Likewise for a covector:

dy® = JJdz" = Andy® = JLJJAdx” = A,dat . (2)

2. TENSOR ANALYSIS II: THE COVARIANT DERIVATIVE

Consider a covector A,(z) and a coordinate transformation z# = z#(y®), with
Jacobi matrix

oxH

w_ I
JO‘ 8y0‘ ’ (3)

As a covector, A, transforms as A, = J¥A,, and therefore its derivative trans-

forms as (using 9z = J50,)

A, = J(Q‘AM =  0gla = Jg‘Jg@VAM + (aﬁjg)Au . (4)
Because of
OsJH = ﬂ =0,J" (5)
/B a_ayaayﬁ_ (o] ﬁ 9

for the anti-symmetrised derivative one finds the tensorial transformation be-
haviour

B3 Aa — DuAg = JET5(D,A, — DA . (6)

Because the Christoffel symbols are symmetric in their lower indices, they always
drop out of the anti-symmetrised derivatives of anti-symmetric covariant tensors.

In the present (simplest) case of covectors, one has

Vudy — VA = 0,A, — T, Ay — 0, A, +T0, A\ = 0,4, — 0, A, . (7)

3. THE EFFECTIVE GEODESIC POTENTIAL
Starting with the metric

ds* = —f(r)dt* + f(r)rdr? +r2dQ% ,  f(r) =14 2¢(r) (8)

one implements the following steps:



e the Lagrangian L is conserved,
—f(E + ()52 4+ 12 (02 + sin? 09°) = € (9)

where € = —1,0 for massive (massless) particles.

e by spherical symmetry, angular momentum is conserved, thus the motion is
planar, and one can choosse the coordinates such that this motion takes place

in the equatorial plane § = /2, 0 = 0, leading to
— )+ fr) T 2t = e (10)
e rotational and time-translational symmetry lead to the conserved quantities
E=f(r)i L=r% (11)

(energy and angular momentum), and using these equations to eliminate ¢

and ¢ from the Lagrangian, one finds
B ()7 f) P D = (12)
Multiplying by f(r) and rearranging, this gives
i? + f(r)L?/r? — ef(r) = E? . (13)

e This already has the desired form of an effective Newtonian potential equa-
tion, but it is typically more useful to separate the constant (asymptotically
Minkowski) part of f(r) from the rest. Thus, with f(r) = 1 4+ 2¢(r) one has

372+ Veps(r) = Eegy (14)
where
Vesp(r)=V(r)+ L2/2r2 =o(r)(—e+ L2/7‘2) + LQ/QT2 (15)
and
Eeff:(E2+€)/2 (16)



