Solutions to Assignments 04

1. Tensor Analysis III: The Covariant Divergence and the Laplacian

(a) First we compute $\Gamma_{\mu \lambda}^{\mu}$ with the definition

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\mu}=\frac{1}{2} g^{\mu \rho}\left(\partial_{\mu} g_{\rho \lambda}+\partial_{\lambda} g_{\mu \rho}-\partial_{\rho} g_{\mu \lambda}\right)=\frac{1}{2} g^{\mu \rho} \partial_{\lambda} g_{\mu \rho} \tag{1}
\end{equation*}
$$

(the 1st and 3rd term cancel). Then, we use the relation $g^{-1} \partial_{\lambda} g=g^{\mu \nu} \partial_{\lambda} g_{\mu \nu}$ to find that :

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\mu}=\frac{1}{2} g^{\mu \rho} \partial_{\lambda} g_{\mu \rho}=\frac{1}{2} g^{-1} \partial_{\lambda} g=g^{-1 / 2} \partial_{\lambda} g^{+1 / 2} \tag{2}
\end{equation*}
$$

where in the last equality we used the fact that $\partial_{\lambda} g^{+1 / 2}=\frac{1}{2} g^{-1 / 2} \partial_{\lambda} g$.
(b) We can now compute the covariant divergence

$$
\begin{equation*}
\nabla_{\mu} J^{\mu}=\partial_{\mu} J^{\mu}+\Gamma_{\mu \rho}^{\mu} J^{\rho}=\partial_{\mu} J^{\mu}+J^{\rho} g^{-1 / 2} \partial_{\rho} g^{+1 / 2}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} J^{\mu}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
\nabla_{\mu} F^{\mu \nu} & =\partial_{\mu} F^{\mu \nu}+\Gamma_{\mu \rho}^{\mu} F^{\rho \nu}+\Gamma_{\mu \rho}^{\nu} F^{\mu \rho}=\partial_{\mu} F^{\mu \nu}+\Gamma_{\mu \rho}^{\mu} F^{\rho \nu} \\
& =\partial_{\mu} F^{\mu \nu}+F^{\rho \nu} g^{-1 / 2} \partial_{\rho} g^{+1 / 2}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} F^{\mu \nu}\right) \tag{4}
\end{align*}
$$

where the last term in the first equation vanishes because an antisymmetric tensor $\left(F^{\mu \rho}\right)$ is contracted with a symmetric object $\left(\Gamma_{\mu \rho}^{\nu}\right)$.
(c) To calculate the Laplacian, we just need the metric,

$$
d s^{2}=d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \quad \Leftrightarrow \quad\left(g_{\alpha \beta}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{5}\\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

its inverse,

$$
\left(g^{\alpha \beta}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{6}\\
0 & r^{-2} & 0 \\
0 & 0 & r^{-2}(\sin \theta)^{-2}
\end{array}\right)
$$

and its determinant,

$$
\begin{equation*}
g=r^{4} \sin ^{2} \theta \quad \Rightarrow \quad \sqrt{g}=r^{2} \sin \theta \tag{7}
\end{equation*}
$$

Then one calculates

$$
\begin{align*}
\square \Phi & =\frac{1}{r^{2} \sin \theta} \partial_{\alpha}\left(r^{2} \sin \theta g^{\alpha \beta} \partial_{\beta} \Phi\right) \\
& =\frac{1}{r^{2} \sin \theta}\left(\partial_{r}\left(r^{2} \sin \theta \partial_{r} \Phi\right)+\partial_{\theta}\left(\sin \theta \partial_{\theta} \Phi\right)+\partial_{\phi}\left((\sin \theta)^{-1} \partial_{\theta} \Phi\right)\right) \tag{8}\\
& =r^{-2} \partial_{r}\left(r^{2} \partial_{r} \Phi\right)+r^{-2}\left((\sin \theta)^{-1} \partial_{\theta}\left(\sin \theta \partial_{\theta} \Phi\right)+(\sin \theta)^{-2} \partial_{\phi}^{2} \Phi\right)
\end{align*}
$$

This can now be rewritten in many ways, e.g. as

$$
\begin{equation*}
\square=\partial_{r}^{2}+\frac{2}{r} \partial_{r}+\frac{\Delta_{S^{2}}}{r^{2}} \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta_{S^{2}}=\frac{1}{\sin \theta} \partial_{a}\left(\sin \theta g^{a b} \partial_{b}\right) \tag{10}
\end{equation*}
$$

$\left(x^{a}=(\theta, \phi)\right)$ the Laplace operator on the unit 2-sphere.
Remark: This calculation evidently generalises to any dimension. Thus in spherical coordinates in which the Euclidean metric has the form

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \Omega_{n}^{2} \tag{11}
\end{equation*}
$$

(with $d \Omega_{n}^{2}$ the line element on the unit n-sphere), the Laplace operator on \mathbb{R}^{n+1} takes the form

$$
\begin{equation*}
\square=\partial_{r}^{2}+\frac{n}{r} \partial_{r}+\frac{\Delta_{S^{n}}}{r^{2}} \tag{12}
\end{equation*}
$$

2. Freely Falling Schwarzschild Observers

For zero angular momentum, and with $\dot{r}_{r=R}=0$ the effective potential equation reduces to

$$
\begin{equation*}
E^{2}-1=\dot{r}^{2}-\frac{2 m}{r} \quad \Rightarrow \quad \dot{r}^{2}=\frac{2 m}{r}-\frac{2 m}{R}, \tag{13}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
\tau_{R \rightarrow r_{1}}=-(2 m)^{-1 / 2} \int_{R}^{r_{1}} d r\left(\frac{R r}{R-r}\right)^{1 / 2} . \tag{14}
\end{equation*}
$$

This integral can be calculated in closed form, e.g. via the change of variables

$$
\begin{equation*}
\frac{r}{R}=\sin ^{2} \alpha \quad \alpha_{1} \leq \alpha \leq \frac{\pi}{2}, \tag{15}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\tau_{R \rightarrow r_{1}}=2\left(\frac{R^{3}}{2 m}\right)^{1 / 2} \int_{\alpha_{1}}^{\pi / 2} d \alpha \sin ^{2} \alpha=\left(\frac{R^{3}}{2 m}\right)^{1 / 2}\left[\alpha-\frac{1}{2} \sin 2 \alpha\right]_{\alpha_{1}}^{\pi / 2} . \tag{16}
\end{equation*}
$$

For $r_{1} \rightarrow 0 \Leftrightarrow \alpha_{1} \rightarrow 0$ one obtains

$$
\begin{equation*}
\tau_{R \rightarrow 0}=\left(\frac{R^{3}}{2 m}\right)^{1 / 2}(\pi / 2)=\pi\left(\frac{R^{3}}{8 m}\right)^{1 / 2} \tag{17}
\end{equation*}
$$

R and $r_{S}=2 m$ have dimensions of length, thus the quantity above also has dimensions of length, so what we have actually calculated is $c \tau$, not τ. To obtain proper time, we thus need to divide by c. Using the approximate values

$$
\begin{equation*}
(R)_{\mathrm{sun}} \approx 7 \times 10^{10} \mathrm{~cm} \quad(2 m)_{\mathrm{sun}} \approx 3 \times 10^{5} \mathrm{~cm} \quad c \approx 3 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1} \tag{18}
\end{equation*}
$$

one finds $\tau_{R \rightarrow 0} \approx 2 \times 10^{3} \mathrm{~s}$, which is roughly 30 minutes.

