SOLUTIONS TO ASSIGNMENTS 03

1. TENSOR ANALYSIS I: THE COVARIANT DERIVATIVE

(a)

(b)

Consider a covector A,(x) and a coordinate transformation z# = a#(y“),
with Jacobi matrix

oxH

As a covector, A, transforms as A, = J4A,, and therefore its derivative

transforms as (using dg = J50,)

A, = JQLAM =  0gAq = Jg‘Jg@VAM + (QgJéf)Au . (2)
Because of o
:E/”L
[ = — = K

for the anti-symmetrised derivative one finds the tensorial transformation
behaviour
OpAa — OaAp = J4JE(0L AL — O, A)) (4)

Because the Christoffel symbols are symmetric in their lower indices, they
always drop out of the anti-symmetrised derivatives of anti-symmetric co-

variant tensors. In the present (simplest) case of covectors, one has
Vudy — VA = 0,A, =T, Ay — 0, A, +T0, A\ = 0,4, — 0,A, . (5)
e Argument by direct calculation:

v,ugz/A = augzz)\ - FZygpA - sz\g”ﬂ (6)

= Ougv) — F)\m/ - Fu,u)\ =0

from the explicit form of the Christoffel symbols.

e Alternative argument: Since Vg, is a tensor, we can choose any co-
ordinate system we like to establish if this tensor is zero or not at a
given point z. Choose an inertial coordinate system at x. Then the par-
tial derivatives of the metric and the Christoffel symbols are zero there.
Therefore the covariant derivative of the metric is zero. Since Vg, is

a tensor, this is then true in every coordinate system.

2. STATIONARY AND FREELY FALLING SCHWARZSCHILD OBSERVERS

(a)

The observer is sitting at fixed radius and angles, therefore his worldline

4-velocity is of the form

dxH

? = UH = (ut,0,0,0) . (7)



The proper time normalisation condition implies
wu, = -1 =l = f(r)7l? (8)

(we have chosen u! > 0 because the oberver evolves forward in time, ¢ > 0).

The acceleration is then

at = Dyut = uPV ut = uloput + u'Tha! = f(r)~'TY, . (9)
'}y is only non-zero for u = r. Thus

a" = f(r)"' Ty = =5f(r)g" gur = +30:f(r) = m/r? . (10)

Therefore the norm of the acceleration is

1 m2

guwata” = gra’a” = [ (11)

T
Note that this approaches the Newtonian value (m/r?)? for r — oo, while
the required acceleration to keep the stationary observer at rest diverges as
r — 2m.

For zero angular momentum, and with 7.—r = 0 the effective potential equa-
tion reduces to
2m 2m  2m
E?-1=¢2-"2 = 2="0_"_ 12
r r R (12)

which integrates to

_ " Rr \'/?
TR—sr, = —(2m) 1/2/ dr <R ) . (13)

R - T

This integral can be calculated in closed form, e.g. via the change of variables

%:sinQa algagg , (14)
leading to
R3\Y? /2 . R3\ /2 . /2
TR—r = 2 <2m> N do sin? a0 = <2m> [a — %sm 2o¢] a{ . (15)

For r1 — 0 < a1 — 0 one obtains
R3 1/2 R3 1/2
TR—0 <2m> (m/2)=m (8m> (16)

R and rg = 2m have dimensions of length, thus the quantity above also has
dimensions of length, so what we have actually calculated is ¢7, not 7. To
obtain proper time, we thus need to divide by c¢. Using the approximate

values
(R)sun = 7 x 107%m  (2m)sun = 3 x 10°cm e~ 3 x 10%ms™!  (17)

one finds Tr_0 ~ 2 x 103s, which is roughly 30 minutes.



