
Solutions to Assignments 03

1. Tensor Analysis I: the Covariant Derivative

(a) Consider a covector Aµ(x) and a coordinate transformation xµ = xµ(yα),

with Jacobi matrix

Jµα =
∂xµ

∂yα
. (1)

As a covector, Aµ transforms as Aα = JµαAµ, and therefore its derivative

transforms as (using ∂β = Jνβ∂ν)

Aα = JµαAµ ⇒ ∂βAα = JµαJ
ν
β∂νAµ + (∂βJ

µ
α)Aµ . (2)

Because of

∂βJ
µ
α =

∂2xµ

∂yα∂yβ
= ∂αJ

µ
β , (3)

for the anti-symmetrised derivative one finds the tensorial transformation

behaviour

∂βAα − ∂αAβ = JµαJ
ν
β (∂νAµ − ∂µAν) . (4)

Because the Christoffel symbols are symmetric in their lower indices, they

always drop out of the anti-symmetrised derivatives of anti-symmetric co-

variant tensors. In the present (simplest) case of covectors, one has

∇µAν −∇νAµ = ∂µAν − ΓλµνAλ − ∂νAµ + ΓλνµAλ = ∂µAν − ∂νAµ . (5)

(b) • Argument by direct calculation:

∇µgνλ = ∂µgνλ − Γρµνgρλ − Γρµλgνρ

= ∂µgνλ − Γλµν − Γνµλ = 0
(6)

from the explicit form of the Christoffel symbols.

• Alternative argument: Since ∇µgνλ is a tensor, we can choose any co-

ordinate system we like to establish if this tensor is zero or not at a

given point x. Choose an inertial coordinate system at x. Then the par-

tial derivatives of the metric and the Christoffel symbols are zero there.

Therefore the covariant derivative of the metric is zero. Since ∇µgνλ is

a tensor, this is then true in every coordinate system.

2. Stationary and Freely Falling Schwarzschild Observers

(a) The observer is sitting at fixed radius and angles, therefore his worldline

4-velocity is of the form

dxµ

dτ
= uµ = (ut, 0, 0, 0) . (7)
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The proper time normalisation condition implies

uµuµ = −1 ⇒ ut = f(r)−1/2 (8)

(we have chosen ut > 0 because the oberver evolves forward in time, ṫ > 0).

The acceleration is then

aµ = Dτu
µ = uρ∇ρuµ = ut∂tu

µ + utΓµttu
t = f(r)−1Γµtt . (9)

Γµtt is only non-zero for µ = r. Thus

ar = f(r)−1Γrtt = −1
2f(r)grrgtt,r = +1

2∂rf(r) = m/r2 . (10)

Therefore the norm of the acceleration is

gµνa
µaν = grra

rar =
1

1− 2m
r

m2

r4
. (11)

Note that this approaches the Newtonian value (m/r2)2 for r → ∞, while

the required acceleration to keep the stationary observer at rest diverges as

r → 2m.

(b) For zero angular momentum, and with ṙr=R = 0 the effective potential equa-

tion reduces to

E2 − 1 = ṙ2 − 2m

r
⇒ ṙ2 =

2m

r
− 2m

R
, (12)

which integrates to

τR→r1 = −(2m)−1/2
∫ r1

R
dr

(
Rr

R− r

)1/2

. (13)

This integral can be calculated in closed form, e.g. via the change of variables

r

R
= sin2 α α1 ≤ α ≤

π

2
, (14)

leading to

τR→r1 = 2

(
R3

2m

)1/2 ∫ π/2

α1

dα sin2 α =

(
R3

2m

)1/2 [
α− 1

2 sin 2α
]π/2
α1

. (15)

For r1 → 0⇔ α1 → 0 one obtains

τR→0 =

(
R3

2m

)1/2

(π/2) = π

(
R3

8m

)1/2

(16)

R and rS = 2m have dimensions of length, thus the quantity above also has

dimensions of length, so what we have actually calculated is cτ , not τ . To

obtain proper time, we thus need to divide by c. Using the approximate

values

(R)sun ≈ 7× 1010cm (2m)sun ≈ 3× 105cm c ≈ 3× 1010cm s−1 (17)

one finds τR→0 ≈ 2× 103s, which is roughly 30 minutes.
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