
Solutions to Assignments 04

1. Tensor Analysis II: The Covariant Divergence and the Laplacian

(a) The covariant divergence is ∇µV µ = ∂µV
µ + ΓµµλV

λ where

Γµµλ =
1

2
gµρ(∂µgρλ + ∂λgµρ − ∂ρgµλ) =

1

2
gµρ∂λgµρ (1)

(the 1st and 3rd term cancel). Now we use g−1∂λg = gµν∂λgµν to find

Γµµλ =
1

2
gµρ∂λgµρ =

1

2
g−1∂λg = g−1/2∂λg

+1/2 (2)

where in the last equality we used the fact that ∂λg
+1/2 = 1

2g
−1/2∂λg. We

can now compute the covariant divergence

∇µJµ = ∂µJ
µ + ΓµµλJ

λ = ∂µJ
µ + Jλg−1/2∂λg

+1/2 = g−1/2∂µ(g1/2Jµ) . (3)

(b) Analogously, for the covariant divergence of an anti-symmetric (2, 0)-tensor

Fµν one has, using (3),

∇µFµν = ∂µF
µν + ΓµµρF

ρν + ΓνµρF
µρ = ∂µF

µν + ΓµµρF
ρν

= ∂µF
µν + F ρνg−1/2∂ρg

+1/2 = g−1/2∂µ(g1/2Fµν)
(4)

where the last term in the first equation vanishes because an antisymmetric

tensor (Fµρ) is contracted with a symmetric object (Γνµρ).

Finally, using the result (3) and ∇βf = ∂βf the Laplacian can be written as

2f = ∇α(gαβ∇βf) = g−1/2∂α(g1/2gαβ∂βf) . (5)

2. Static Schwarzschild Observers in Eddington-Finkelstein Coordinates

In ingoing EF coordinates, the Schwarschild metric takes the form

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2 (6)

where v = t+ r∗ satisfies

dv = dt+ dr∗ = dt+ dr/f(r) ⇒ ∂v

∂t
= 1 ,

∂v

∂r
= f(r)−1 . (7)

A static observer has 4-velocity

(uα)EF = (uv, ur, uθ, uφ) = (uv, 0, 0, 0) , (8)

with

gαβu
αuβ = −f(r)(uv)2 = −1 ⇒ uv = f(r)−1/2 . (9)
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Thus

(uα)EF = (f(r)−1/2, 0, 0, 0) . (10)

This agrees with the result in SS coordinates, as could have also been deduced

from the vectorial transformation behaviour (yµ are now the SS coordinates)

(uv)EF =
∂v

∂yµ
(uµ)SS =

∂v

∂t
(ut)SS = (ut)SS . (11)

(a) Since u̇α = 0 for a static oberver, the acceleration is

aα = Γαβγu
βuγ = Γαvv(u

v)2 = f(r)−1Γαvv . (12)

Even though Christoffel symbols are non-tensorial in general, they do trans-

form in a simple way under the very simple coordinate transformation be-

tween SS and EF coordinates. Nevertheless it is more convenient (and in

any case a good exercise) to just calculate the relevant Christoffel symbols

directly in EF coordinates rather than transforming them from the result in

SS coordinates.

First of all, the Christoffel symbol Γαvv is rather obviously non-zero only for

α = r, and

Γrvv = −1
2gvv,r = +1

2f
′(r) = m/r2 . (13)

To determine Γαvv we need the components of the inverse metric. Because

the metric is not diagonal, this requires a bit of care. In matrix form, the

(v, r)-components of the metric and its inverse are

(gαβ) =

(
−f 1

1 0

)
, (gαβ) =

(
0 1

1 f

)
(14)

Therefore, there are two non-vanishing Christoffel symbols Γαvv, namely

Γvvv = Γrvv , Γrvv = f(r)Γrvv , (15)

and the acceleration vector is

(aα)EF = (av = f(r)−1m/r2, ar = m/r2, 0, 0) . (16)

Thus the (non-singular, “Newtonian”) r-component agrees with that of the

acceleration in SS coordinates, but in addition in EF coordinates there is a

v-component which is singular as r → 2m.

(b) Alternatively, and more quickly, since aα is a vector, one can obtain this

result by transforming the result in SS coordinates to EF coordinates,

(aα)EF =
∂xα

∂yµ
(aµ)SS =

∂xα

∂r
(ar)SS ⇒

{
(av)EF = f(r)−1m/r2

(ar)EF = m/r2
(17)

(c) Finally, the norm of the acceleration in EF coordinates is

gαβa
αaβ = −f(r)(av)2 + 2avar = f(r)−1(m/r2)2 , (18)

in complete agreement with the result in SS coordinates (as it should).
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