Solutions to Assignments 04

1. Tensor Analysis II: The Covariant Divergence and the Laplacian

(a) The covariant divergence is $\nabla_{\mu} V^{\mu}=\partial_{\mu} V^{\mu}+\Gamma_{\mu \lambda}^{\mu} V^{\lambda}$ where

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\mu}=\frac{1}{2} g^{\mu \rho}\left(\partial_{\mu} g_{\rho \lambda}+\partial_{\lambda} g_{\mu \rho}-\partial_{\rho} g_{\mu \lambda}\right)=\frac{1}{2} g^{\mu \rho} \partial_{\lambda} g_{\mu \rho} \tag{1}
\end{equation*}
$$

(the 1st and 3rd term cancel). Now we use $g^{-1} \partial_{\lambda} g=g^{\mu \nu} \partial_{\lambda} g_{\mu \nu}$ to find

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\mu}=\frac{1}{2} g^{\mu \rho} \partial_{\lambda} g_{\mu \rho}=\frac{1}{2} g^{-1} \partial_{\lambda} g=g^{-1 / 2} \partial_{\lambda} g^{+1 / 2} \tag{2}
\end{equation*}
$$

where in the last equality we used the fact that $\partial_{\lambda} g^{+1 / 2}=\frac{1}{2} g^{-1 / 2} \partial_{\lambda} g$. We can now compute the covariant divergence

$$
\begin{equation*}
\nabla_{\mu} J^{\mu}=\partial_{\mu} J^{\mu}+\Gamma_{\mu \lambda}^{\mu} J^{\lambda}=\partial_{\mu} J^{\mu}+J^{\lambda} g^{-1 / 2} \partial_{\lambda} g^{+1 / 2}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} J^{\mu}\right) \tag{3}
\end{equation*}
$$

(b) Analogously, for the covariant divergence of an anti-symmetric (2,0)-tensor $F^{\mu \nu}$ one has, using (3),

$$
\begin{align*}
\nabla_{\mu} F^{\mu \nu} & =\partial_{\mu} F^{\mu \nu}+\Gamma_{\mu \rho}^{\mu} F^{\rho \nu}+\Gamma_{\mu \rho}^{\nu} F^{\mu \rho}=\partial_{\mu} F^{\mu \nu}+\Gamma_{\mu \rho}^{\mu} F^{\rho \nu} \\
& =\partial_{\mu} F^{\mu \nu}+F^{\rho \nu} g^{-1 / 2} \partial_{\rho} g^{+1 / 2}=g^{-1 / 2} \partial_{\mu}\left(g^{1 / 2} F^{\mu \nu}\right) \tag{4}
\end{align*}
$$

where the last term in the first equation vanishes because an antisymmetric tensor $\left(F^{\mu \rho}\right)$ is contracted with a symmetric object $\left(\Gamma_{\mu \rho}^{\nu}\right)$.
Finally, using the result (3) and $\nabla_{\beta} f=\partial_{\beta} f$ the Laplacian can be written as

$$
\begin{equation*}
\square f=\nabla_{\alpha}\left(g^{\alpha \beta} \nabla_{\beta} f\right)=g^{-1 / 2} \partial_{\alpha}\left(g^{1 / 2} g^{\alpha \beta} \partial_{\beta} f\right) \tag{5}
\end{equation*}
$$

2. Static Schwarzschild Observers in Eddington-Finkelstein Coordinates

 In ingoing EF coordinates, the Schwarschild metric takes the form$$
\begin{equation*}
d s^{2}=-f(r) d v^{2}+2 d v d r+r^{2} d \Omega^{2} \tag{6}
\end{equation*}
$$

where $v=t+r_{*}$ satisfies

$$
\begin{equation*}
d v=d t+d r_{*}=d t+d r / f(r) \quad \Rightarrow \quad \frac{\partial v}{\partial t}=1 \quad, \quad \frac{\partial v}{\partial r}=f(r)^{-1} \tag{7}
\end{equation*}
$$

A static observer has 4-velocity

$$
\begin{equation*}
\left(u^{\alpha}\right)_{E F}=\left(u^{v}, u^{r}, u^{\theta}, u^{\phi}\right)=\left(u^{v}, 0,0,0\right) \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{\alpha \beta} u^{\alpha} u^{\beta}=-f(r)\left(u^{v}\right)^{2}=-1 \quad \Rightarrow \quad u^{v}=f(r)^{-1 / 2} \tag{9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left(u^{\alpha}\right)_{E F}=\left(f(r)^{-1 / 2}, 0,0,0\right) \tag{10}
\end{equation*}
$$

This agrees with the result in SS coordinates, as could have also been deduced from the vectorial transformation behaviour (y^{μ} are now the SS coordinates)

$$
\begin{equation*}
\left(u^{v}\right)_{E F}=\frac{\partial v}{\partial y^{\mu}}\left(u^{\mu}\right)_{S S}=\frac{\partial v}{\partial t}\left(u^{t}\right)_{S S}=\left(u^{t}\right)_{S S} \tag{11}
\end{equation*}
$$

(a) Since $\dot{u}^{\alpha}=0$ for a static oberver, the acceleration is

$$
\begin{equation*}
a^{\alpha}=\Gamma_{\beta \gamma}^{\alpha} u^{\beta} u^{\gamma}=\Gamma_{v v}^{\alpha}\left(u^{v}\right)^{2}=f(r)^{-1} \Gamma_{v v}^{\alpha} . \tag{12}
\end{equation*}
$$

Even though Christoffel symbols are non-tensorial in general, they do transform in a simple way under the very simple coordinate transformation between SS and EF coordinates. Nevertheless it is more convenient (and in any case a good exercise) to just calculate the relevant Christoffel symbols directly in EF coordinates rather than transforming them from the result in SS coordinates.

First of all, the Christoffel symbol $\Gamma_{\alpha v v}$ is rather obviously non-zero only for $\alpha=r$, and

$$
\begin{equation*}
\Gamma_{r v v}=-\frac{1}{2} g_{v v, r}=+\frac{1}{2} f^{\prime}(r)=m / r^{2} \tag{13}
\end{equation*}
$$

To determine $\Gamma_{v v}^{\alpha}$ we need the components of the inverse metric. Because the metric is not diagonal, this requires a bit of care. In matrix form, the (v, r)-components of the metric and its inverse are

$$
\left(g_{\alpha \beta}\right)=\left(\begin{array}{cc}
-f & 1 \tag{14}\\
1 & 0
\end{array}\right) \quad, \quad\left(g^{\alpha \beta}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & f
\end{array}\right)
$$

Therefore, there are two non-vanishing Christoffel symbols $\Gamma_{v v}^{\alpha}$, namely

$$
\begin{equation*}
\Gamma_{v v}^{v}=\Gamma_{r v v} \quad, \quad \Gamma_{v v}^{r}=f(r) \Gamma_{r v v} \tag{15}
\end{equation*}
$$

and the acceleration vector is

$$
\begin{equation*}
\left(a^{\alpha}\right)_{E F}=\left(a^{v}=f(r)^{-1} m / r^{2}, a^{r}=m / r^{2}, 0,0\right) . \tag{16}
\end{equation*}
$$

Thus the (non-singular, "Newtonian") r-component agrees with that of the acceleration in SS coordinates, but in addition in EF coordinates there is a v-component which is singular as $r \rightarrow 2 m$.
(b) Alternatively, and more quickly, since a^{α} is a vector, one can obtain this result by transforming the result in SS coordinates to EF coordinates,

$$
\left(a^{\alpha}\right)_{E F}=\frac{\partial x^{\alpha}}{\partial y^{\mu}}\left(a^{\mu}\right)_{S S}=\frac{\partial x^{\alpha}}{\partial r}\left(a^{r}\right)_{S S} \Rightarrow\left\{\begin{array}{l}
\left(a^{v}\right)_{E F}=f(r)^{-1} m / r^{2} \tag{17}\\
\left(a^{r}\right)_{E F}=m / r^{2}
\end{array}\right.
$$

(c) Finally, the norm of the acceleration in EF coordinates is

$$
\begin{equation*}
g_{\alpha \beta} a^{\alpha} a^{\beta}=-f(r)\left(a^{v}\right)^{2}+2 a^{v} a^{r}=f(r)^{-1}\left(m / r^{2}\right)^{2} \tag{18}
\end{equation*}
$$

in complete agreement with the result in SS coordinates (as it should).

