Solutions to Assignments 05

1. On the Klein-Gordon Field in a curved space-time

The action is

$$
\begin{equation*}
S\left[\phi, g_{\alpha \beta}\right]=\int \sqrt{g} d^{4} x L \equiv-\frac{1}{2} \int \sqrt{g} d^{4} x\left(g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+m^{2} \phi^{2}\right) \tag{1}
\end{equation*}
$$

and the energy-momentum tensor is

$$
\begin{equation*}
T_{\alpha \beta}=\partial_{\alpha} \phi \partial_{\beta} \phi+g_{\alpha \beta} L \tag{2}
\end{equation*}
$$

(a) To show that the energy-momentum tensor is covariantly conserved we will use $\partial_{\mu} \phi=\nabla_{\mu} \phi$, the commutativity $\nabla_{\mu} \nabla_{\nu} \phi=\nabla_{\nu} \nabla_{\mu} \phi$ of the covariant derivative on scalars, and the fact that ϕ is a solution to the Klein-Gordon equation $\nabla^{\mu} \nabla_{\mu} \phi=m^{2} \phi$, then the result follows:

$$
\begin{align*}
\nabla^{\mu} T_{\mu \nu} & =\nabla^{\mu}\left(\partial_{\mu} \phi \partial_{\nu} \phi\right)+\nabla^{\mu}\left(g_{\mu \nu} L\right) \\
& =\nabla^{\mu}\left(\partial_{\mu} \phi \partial_{\nu} \phi\right)-\frac{1}{2} \nabla_{\nu}\left(\partial_{\lambda} \phi \partial^{\lambda} \phi+m^{2} \phi^{2}\right) \\
& =\partial_{\nu} \phi \nabla^{\mu} \partial_{\mu} \phi+\partial_{\mu} \phi \nabla^{\mu} \partial_{\nu} \phi-\partial_{\lambda} \phi \nabla_{\nu} \partial^{\lambda} \phi-m^{2} \phi \nabla_{\nu} \phi \\
& =\partial_{\nu} \phi m^{2} \phi+\partial_{\mu} \phi \nabla^{\mu} \nabla_{\nu} \phi-\partial_{\lambda} \phi \nabla^{\lambda} \nabla_{\nu} \phi-m^{2} \phi \nabla_{\nu} \phi=0 . \tag{3}
\end{align*}
$$

(b) The variation of the action with respect to the metric is

$$
\begin{equation*}
\delta S=\int d^{4} x(\delta(\sqrt{g}) L+\sqrt{g} \delta L)=-\frac{1}{2} \int d^{4} x \sqrt{g}\left(g_{\mu \nu} L \delta g^{\mu \nu}-2 \delta L\right) \tag{4}
\end{equation*}
$$

(valid for any Lagrangian L). Using $\delta\left(g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right)=\left(\delta g^{\mu \nu}\right) \partial_{\mu} \phi \partial_{\nu} \phi$, one finds

$$
\begin{equation*}
\delta S=-\frac{1}{2} \int d^{4} x \sqrt{g}\left(g_{\mu \nu} L+\partial_{\mu} \phi \partial_{\nu} \phi\right) \delta g^{\mu \nu}=-\frac{1}{2} \int d^{4} x \sqrt{g} T_{\mu \nu} \delta g^{\mu \nu} \tag{5}
\end{equation*}
$$

as claimed.
2. On the Maxwell Equations in Curved Space-Time The action is

$$
\begin{equation*}
S\left[A_{\alpha}, g_{\alpha \beta}\right]=\int \sqrt{g} d^{4} x L=-\frac{1}{4} \int \sqrt{g} d^{4} x F_{\alpha \beta} F^{\alpha \beta} \tag{6}
\end{equation*}
$$

and the gauge-invariant and generally covariant energy momentum tensor is

$$
\begin{equation*}
T_{\alpha \beta}=F_{\alpha \gamma} F_{\beta}^{\gamma}-\frac{1}{4} g_{\alpha \beta} F_{\gamma \delta} F^{\gamma \delta} \tag{7}
\end{equation*}
$$

(a) We compute, using $\nabla_{\mu} F^{\mu \lambda}=0$,

$$
\begin{align*}
\nabla_{\mu} T^{\mu \nu} & =\nabla_{\mu}\left(F_{\lambda}^{\mu} F^{\nu \lambda}-\frac{1}{4} g^{\mu \nu} F_{\lambda \rho} F^{\lambda \rho}\right)=F_{\lambda}^{\mu} \nabla_{\mu} F^{\nu \lambda}-\frac{1}{2} F_{\lambda \rho} \nabla^{\nu} F^{\lambda \rho} \\
& =F_{\mu \lambda}\left(\nabla^{\mu} F^{\nu \lambda}-\frac{1}{2} \nabla^{\nu} F^{\mu \lambda}\right)=\frac{1}{2} F_{\mu \lambda}\left(\nabla^{\mu} F^{\nu \lambda}-\nabla^{\mu} F^{\lambda \nu}-\nabla^{\nu} F^{\mu \lambda}\right) \tag{8}
\end{align*}
$$

Uinsg the anti-symmetry of F, one can write this as

$$
\begin{equation*}
\nabla_{\mu} T^{\mu \nu}=-\frac{1}{2} F_{\mu \lambda}\left(\nabla^{\lambda} F^{\nu \mu}+\nabla^{\mu} F^{\lambda \nu}+\nabla^{\nu} F^{\mu \lambda}\right)=0 \tag{9}
\end{equation*}
$$

(b) For the metric variation of the action, we can also use the general formula (4). For the variation of the Lagrangian with respect to the metric, we note that

$$
\begin{equation*}
\delta\left(g^{\mu \lambda} g^{\nu \rho} F_{\mu \nu} F_{\lambda \rho}\right)=2\left(\delta g^{\mu \lambda}\right) g^{\nu \rho} F_{\mu \nu} F_{\lambda \rho}=2\left(\delta g^{\mu \nu}\right) g^{\lambda \rho} F_{\mu \lambda} F_{\nu \rho}=2\left(\delta g^{\mu \nu}\right) F_{\mu \lambda} F_{\nu}^{\lambda} \tag{10}
\end{equation*}
$$

and therefore $-2 \delta L=\left(\delta g^{\mu \nu}\right) F_{\mu \lambda} F_{\nu}{ }^{\lambda}$. Thus (7) follows.

Painlevé-Gullstrand Coordinates for the Schwarzschild Space-Time

(a) We make a coordinate transformation on the standard Schwarzschild metric with coordinates (t, r) defining a new coordinate $T(t, r)=t+\psi(r)$. This leads us to rewrite the metric with $d T=d t+\psi^{\prime} d r$ and we find

$$
\begin{equation*}
d s^{2}=-f(r) d T^{2}+2 f(r) \psi^{\prime} d T d r+f(r)^{-1}\left(1-f(r)^{2} \psi^{\prime 2}\right) d r^{2}+r^{2} d \Omega^{2} \tag{11}
\end{equation*}
$$

Choosing $C(r)=f(r) \psi^{\prime}$ gives the desired result and the function $C(r)$ is completely arbitrary because $\psi(r)$ is arbitrary.
(b) For the Painlevé-Gullstrand coordinate we make a particular choice for $C(r)$ namely $C(r)=\sqrt{1-f(r)}$ such that $g_{r r}=f(r)^{-1}\left(1-C(r)^{2}\right)=1$. We are thus left with the metric

$$
\begin{equation*}
d s^{2}=-f(r) d T^{2}+2 \sqrt{\frac{2 m}{r}} d T d r+d r^{2}+r^{2} d \Omega^{2} \tag{12}
\end{equation*}
$$

Now, with this new choice of coordinate we sees that any component $g_{\mu \nu}$ of the metric stays finite for any value of $r>0$ (this was not the case at the beginning in the (t, r)-coordinates). In addition to that we also notice that the determinant of the metric is :

$$
\begin{equation*}
\operatorname{det}\left(g_{\mu \nu}\right)=\left(-f(r)-\frac{2 m}{r}\right) r^{4} \sin (\theta)^{2}=-r^{4} \sin (\theta)^{2} \tag{13}
\end{equation*}
$$

which is non-vanishing for any $r>0$ (with $\theta \neq 0, \pi$ of course).
(c) If we now make the choice $C(r)=1$, then the metric becomes :

$$
\begin{equation*}
d s^{2}=-f(r) d T^{2}+2 d T d r+r^{2} d \Omega^{2} \tag{14}
\end{equation*}
$$

and if we rename $T(t, r)$ to $v(t, r)$, then

$$
\begin{equation*}
d s^{2}=-f(r) d v^{2}+2 d v d r+r^{2} d \Omega^{2} \tag{15}
\end{equation*}
$$

is exactly the metric in the Eddington-Finkelstein coordinates.
We can also check explicitly that the coordinate transformation is indeed also the same. The particular choice $C(r)=1$ implies that $\psi(r)$ is such that

$$
\begin{equation*}
C(r)=1 \quad \Leftrightarrow \quad \psi^{\prime}(r)=\frac{1}{f(r)} \quad \Leftrightarrow \quad \psi(r)=r^{*}+c \tag{16}
\end{equation*}
$$

where the constant c can be set to zero so that we have

$$
\begin{equation*}
T(t, r)=t+\psi(r)=t+r^{*}=v(t, r) \tag{17}
\end{equation*}
$$

as we should.

