
Solutions to Assignments 05

1. On the Klein-Gordon Field in a curved space-time

The action is

S[φ, gαβ ] =

∫ √
gd4x L ≡ −1

2

∫ √
gd4x

(

gµν∂µφ∂νφ+m2φ2
)

(1)

and the energy-momentum tensor is

Tαβ = ∂αφ∂βφ+ gαβL (2)

(a) To show that the energy-momentum tensor is covariantly conserved we will

use ∂µφ = ∇µφ, the commutativity ∇µ∇νφ = ∇ν∇µφ of the covariant

derivative on scalars, and the fact that φ is a solution to the Klein-Gordon

equation ∇µ∇µφ = m2φ, then the result follows:

∇µTµν = ∇µ(∂µφ∂νφ) +∇µ(gµνL)

= ∇µ(∂µφ∂νφ)−
1

2
∇ν(∂λφ∂

λφ+m2φ2)

= ∂νφ∇µ∂µφ+ ∂µφ∇µ∂νφ− ∂λφ∇ν∂
λφ−m2φ∇νφ

= ∂νφ m
2φ+ ∂µφ∇µ∇νφ− ∂λφ∇λ∇νφ−m2φ∇νφ = 0 . (3)

(b) The variation of the action with respect to the metric is

δS =

∫

d4x (δ(
√
g)L+

√
gδL) = −1

2

∫

d4x
√
g (gµνLδg

µν − 2δL) (4)

(valid for any Lagrangian L). Using δ(gµν∂µφ∂νφ) = (δgµν )∂µφ∂νφ, one finds

δS = −1

2

∫

d4x
√
g(gµνL+ ∂µφ∂νφ)δg

µν = −1

2

∫

d4x
√
gTµνδg

µν (5)

as claimed.

2. On the Maxwell Equations in Curved Space-Time The action is

S[Aα, gαβ ] =

∫ √
gd4x L = −1

4

∫ √
gd4xFαβF

αβ (6)

and the gauge-invariant and generally covariant energy momentum tensor is

Tαβ = FαγF
γ
β − 1

4
gαβFγδF

γδ (7)

(a) We compute, using ∇µF
µλ = 0,

∇µT
µν = ∇µ(F

µ
λF

νλ − 1

4
gµνFλρF

λρ) = F
µ
λ∇µF

νλ − 1

2
Fλρ∇νF λρ

= Fµλ

(

∇µF νλ − 1

2
∇νFµλ

)

= 1

2
Fµλ

(

∇µF νλ −∇µF λν −∇νFµλ
)

(8)

Uinsg the anti-symmetry of F , one can write this as

∇µT
µν = −1

2
Fµλ

(

∇λF νµ +∇µF λν +∇νFµλ
)

= 0 (9)
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(b) For the metric variation of the action, we can also use the general formula

(4). For the variation of the Lagrangian with respect to the metric, we note

that

δ(gµλgνρFµνFλρ) = 2(δgµλ)gνρFµνFλρ = 2(δgµν )gλρFµλFνρ = 2(δgµν )FµλF
λ
ν

(10)

and therefore −2δL = (δgµν )FµλF
λ
ν . Thus (7) follows.

Painlevé-Gullstrand Coordinates for the Schwarzschild Space-Time

(a) We make a coordinate transformation on the standard Schwarzschild metric

with coordinates (t, r) defining a new coordinate T (t, r) = t + ψ(r). This

leads us to rewrite the metric with dT = dt+ ψ′dr and we find

ds2 = −f(r)dT 2 + 2f(r)ψ′dTdr + f(r)−1(1− f(r)2ψ′2)dr2 + r2dΩ2 (11)

Choosing C(r) = f(r)ψ′ gives the desired result and the function C(r) is

completely arbitrary because ψ(r) is arbitrary.

(b) For the Painlevé-Gullstrand coordinate we make a particular choice for C(r)

namely C(r) =
√

1− f(r) such that grr = f(r)−1(1 − C(r)2) = 1. We are

thus left with the metric

ds2 = −f(r)dT 2 + 2

√

2m

r
dTdr + dr2 + r2dΩ2 (12)

Now, with this new choice of coordinate we sees that any component gµν of

the metric stays finite for any value of r > 0 (this was not the case at the

beginning in the (t, r)-coordinates). In addition to that we also notice that

the determinant of the metric is :

det(gµν) = (−f(r)− 2m

r
)r4 sin(θ)2 = −r4 sin(θ)2 (13)

which is non-vanishing for any r > 0 (with θ 6= 0, π of course).

(c) If we now make the choice C(r) = 1, then the metric becomes :

ds2 = −f(r)dT 2 + 2dTdr + r2dΩ2 (14)

and if we rename T (t, r) to v(t, r), then

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2 (15)

is exactly the metric in the Eddington-Finkelstein coordinates.

We can also check explicitly that the coordinate transformation is indeed also

the same. The particular choice C(r) = 1 implies that ψ(r) is such that

C(r) = 1 ⇔ ψ′(r) =
1

f(r)
⇔ ψ(r) = r∗ + c , (16)

where the constant c can be set to zero so that we have

T (t, r) = t+ ψ(r) = t+ r∗ = v(t, r) (17)

as we should.
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