KFT Übungen 04 (Addendum)

REMARKS ON SYMMETRISATION AND ANTI-SYMMETRISATION OF TENSORS:

- A covariant 2-tensor $T_{\mu \nu}$, say, is said to be symmetric if $T_{\mu \nu}=T_{\nu \mu}$ and antisymmetric if $T_{\mu \nu}=-T_{\nu \mu}$. This is well-defined because it is a Lorentz-invariant notion: a tensor is symmetric in all inertial systems iff it is symmetric in one inertial system, etc.
- This definition can be extended to any or all pairs of covariant indices or pairs of contravariant indices. Thus e.g. a tensor $T^{\mu_{1} \ldots \mu_{p}}$ is called totally symmetric (or totally anti-symmetric) if it is symmetric (anti-symmetric) under the exchange of any pair of indices. On the other hand, it is not meaningful to talk of the symmetry of a (1,1)-tensor, say, as an equation like $T_{\nu}^{\mu}=T_{\mu}^{\nu}$ is meaningless.
- The number of independent components of a general (p, q)-tensor is 4^{p+q}. The number of independent components is reduced if the tensor has some symmetry properties. Thus
- a symmetric (0,2)- or (2,0)-tensor has $4 \times 5 / 2=10$ independent components,
- an anti-symmetric (0,2)- or (2,0)-tensor has $4 \times 3 / 2=6$ independent components,
- a totally anti-symmetric (0,3)-tensor $T_{\nu_{1} \ldots \nu_{3}}$ has $4 \times 3 \times 2 /(2 \times 3)=4$ independent components,
- and a totally anti-symmetric (0,4)-tensor $T_{\nu_{1} \ldots \nu_{4}}$ has only got one independent component, namely T_{0123} (all the others being determined by antisymmetry).
- Given any $(0,2)$-tensor $T_{\mu \nu}$, one can decompose it into its symmetric and antisymmetric parts as

$$
\begin{equation*}
T_{\mu \nu}=\frac{1}{2}\left(T_{\mu \nu}+T_{\nu \mu}\right)+\frac{1}{2}\left(T_{\mu \nu}-T_{\nu \mu}\right) \equiv T_{(\mu \nu)}+T_{[\mu \nu]} \tag{1}
\end{equation*}
$$

The decomposition into symmetric and anti-symmetric parts is Lorentz invariant. In particular, when $T_{\mu \nu}$ is a tensor, also $T_{(\mu \nu)}$ and $T_{[\mu \nu]}$ are tensors, and thus
(anti-)symmetrisation is yet another linear operation that one can perform on tensors.

The factor $\frac{1}{2}$ is chosen such that the symmetrisation of a symmetric tensor is the same as the original tensor,

$$
\begin{equation*}
T_{\mu \nu}=T_{\nu \mu} \quad \Rightarrow \quad T_{(\mu \nu)}=T_{\mu \nu} \quad, \quad T_{[\mu \nu]}=0 \tag{2}
\end{equation*}
$$

(and likewise for the anti-symmetrisation of anti-symmetric tensors).

- This can be generalised to the (anti-)symmetrisation of any pair of (contravariant or covariant) indices; e.g.

$$
\begin{equation*}
T_{(\mu \nu) \lambda}=\frac{1}{2}\left(T_{\mu \nu \lambda}+T_{\nu \mu \lambda}\right) \tag{3}
\end{equation*}
$$

is the symmetrisation of $T_{\mu \nu \lambda}$ in its first and second index. It can also be generalised to the total (anti-)symmetrisation of a higher-rank tensor; e.g.

$$
\begin{equation*}
T_{(\mu \nu \lambda)} \equiv \frac{1}{3!}\left(T_{\mu \nu \lambda}+T_{\nu \mu \lambda}+T_{\lambda \nu \mu}+T_{\nu \lambda \mu}+T_{\mu \lambda \nu}+T_{\lambda \mu \nu}\right) \tag{4}
\end{equation*}
$$

is totally symmetric, i.e. symmetric under the exchange of any pair of indices, and

$$
\begin{equation*}
T_{[\mu \nu \lambda]} \equiv \frac{1}{3!}\left(T_{\mu \nu \lambda}-T_{\nu \mu \lambda}-T_{\lambda \nu \mu}+T_{\nu \lambda \mu}-T_{\mu \lambda \nu}+T_{\lambda \mu \nu}\right) \tag{5}
\end{equation*}
$$

is totally anti-symmetric. The prefactor $\frac{1}{6}$ is again there to ensure that the total symmetrisation of a totally symmetric tensor is the original tensor (and likewise for the total anti-symmetrisation of totally anti-symmetric tensors). This generalises in an evident way to higher rank p tensors, with the combinatorial prefactor $1 / p!$.

- A special case, and the one of interest to us here, is the total anti-symmetrisation $T_{[\mu \nu \lambda]}$ of a tensor $T_{\mu \nu \lambda}$ that is already anti-symmetric in two of its indices, say $T_{\mu \lambda \nu}=-T_{\mu \nu \lambda}$. In that case, the 1st and 2nd terms of (5) are equal, as are the 3rd and 4 th, and the 5 th and 6 th, and the formula (5) reduces to a sum of 3 terms,

$$
\begin{equation*}
T_{[\mu \nu \lambda]}=\frac{1}{3}\left(T_{\mu \nu \lambda}+T_{\nu \lambda \mu}+T_{\lambda \mu \nu}\right), \tag{6}
\end{equation*}
$$

the sum of cyclic permutations of the 3 indices.

- In particular, the totally anti-symmetrised derivative of the Maxwell field strength tensor is

$$
\begin{equation*}
\partial_{[\alpha} F_{\beta \gamma]}=\frac{1}{3}\left(\partial_{\alpha} F_{\beta \gamma}+\partial_{\beta} F_{\gamma \alpha}+\partial_{\gamma} F_{\alpha \beta}\right) \tag{7}
\end{equation*}
$$

and therefore the homogeneous Maxwell equations can be written as

$$
\begin{equation*}
\partial_{\alpha} F_{\beta \gamma}+\partial_{\beta} F_{\gamma \alpha}+\partial_{\gamma} F_{\alpha \beta}=0 \quad \Leftrightarrow \quad \partial_{[\alpha} F_{\beta \gamma]}=0 . \tag{8}
\end{equation*}
$$

From the above counting of components we learn (or reconfirm) that this equation has precisely 4 independent components, equal to the number of components of the homogeneous Maxwell equations.

- Since $\partial_{[\alpha} F_{\gamma \delta]}$ is totally anti-symmetric, nothing is lost by multiplying it by the totally anti-symmetric Levi-Civita symbol $\epsilon^{\alpha \beta \gamma \delta}$ characterised (with a suitable choice of sign convention) by

$$
\begin{equation*}
\epsilon^{\alpha \beta \gamma \delta}=\epsilon^{[\alpha \beta \gamma \delta]} \quad, \quad \epsilon^{0123}=-1 . \tag{9}
\end{equation*}
$$

Thus the homogeneous Maxwell equations can equivalently be written as

$$
\begin{equation*}
\partial_{[\alpha} F_{\gamma \delta]}=0 \quad \Leftrightarrow \quad \epsilon^{\alpha \beta \gamma \delta} \partial_{\alpha} F_{\gamma \delta}=0 \quad \Leftrightarrow \quad \partial_{\alpha} \tilde{F}^{\alpha \beta}=0 \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{F}^{\alpha \beta}=\frac{1}{2} \in^{\alpha \beta \gamma \delta} F_{\gamma \delta} \tag{11}
\end{equation*}
$$

is the dual field strength tensor.

- Essentially, $\tilde{F}^{\alpha \beta}$ is obtained from $F^{\alpha \beta}$ by the replacement $\vec{B} \rightarrow \vec{E} / c$ and $\vec{E} / c \rightarrow$ $-\vec{B}$. Since under this replacement the left-hand sides of the inhomogeneous Maxwell equations get mapped to left-hand sides of the homogeneous Maxwell equations (electric-magnetic duality of the Maxwell equations), it is not surprising that the full set of (inhomogeneous and homogeneous) Maxwell equations can be written in the more symmetric and compact form

$$
\begin{equation*}
\partial_{\alpha} F^{\alpha \beta}=-\mu_{0} J^{\beta} \quad, \quad \partial_{\alpha} \tilde{F}^{\alpha \beta}=0 \tag{12}
\end{equation*}
$$

These two sets of equations encapsulate all of electrodynamics (Maxwell theory).

