
4 Lorentz-Covariant Formulation of Maxwell Theory

4.1 Maxwell Equations (Review)

In the traditional (non-covariant, 3-vector) formulation, the Maxwell equations are the

1. Homogeneous Equations
~r. ~B = 0

~r⇥ ~E + @t
~B = 0

(4.1)

2. Inhomogeneous Equations
~r. ~E = ⇢/✏0

~r⇥ ~B � 1

c2
@t

~E = µ0
~J

(4.2)

Here ~E and ~B are the electric and magnetic fields, and the sources of these fields are the electric

charge density ⇢ and the current density ~J . ✏0 and µ0 are constants (whose names, let alone

their values, I can never remember) which are related to the velocity of light by

✏0µ0 = c
�2

. (4.3)

The inhomogeneous equations imply the

3. Continuity Equation

@t⇢+ ~r. ~J = 0 . (4.4)

In the absence of sources, the homogeneous and inhomogeneous equations together imply the

4. Wave Equations for the Electric and Magnetic Fields

⇢ = ~J = 0 ) ⇤ ~E = 0 , ⇤ ~B = 0 . (4.5)

In order to (locally) solve the homogeneous equations, and also for other purposes and reasons,

it is useful to introduce the

5. Electric Potential � and Magnetic Potential ~A

~B = ~r⇥ ~A ) ~r. ~B = 0

~E = �~r�� @t
~A ) ~r⇥ ~E + @t

~B = 0
(4.6)

Introduction of these potentials gives rise to the

6. Gauge Transformations / Gauge Invariance

� ! �� @t , ~A ! ~A+ ~r ) ~E ! ~E , ~B ! ~B . (4.7)

Finally, in terms of the potentials, the (remaining) inhomogeneous equations are the
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7. Equations of Motion for the Potentials

⇤ ~A� ~rG = �µ0
~J

⇤(��/c)� 1

c
@tG = µ0⇢c

(4.8)

with

G = ~r. ~A+
1

c
@t(�/c) . (4.9)

This is all we will need.

4.2 Lorentz Invariance of the Maxwell Equations: Preliminary Remarks

At first sight, the presumed Lorentz invariance of the Maxwell equations, as presented above,

and the possible Lorentz-tensorial structure of their building blocks are totally obscure. What

we have are various 3-vectors (i.e. vectors under spatial rotations), such as ~E and ~J , 3-vectorial

di↵erential operators like ~r, and 3-scalars like �. So where do the Lorentz tensors hide?

The issue is particularly puzzling for the electric and magnetic fields ~E and ~B: while the

electromagnetic field of a charge at rest is purely electric, that of a charge moving with a

constant velocity contains both electric and magnetic fields. This means that the decomposition

of an electromagnetic field into electric and magnetic fields depends on the inertial system and

that under Lorentz boosts electric and magnetic fields will “mix”, i.e. transform into each other.

How can one combine the 3 components of ~E and the 3 components of ~B into a Lorentz tensor?

However, looking a bit closer at these equations, one finds some suggestive and intriguing hints

that these equations really want to be written in a much nicer four-dimensional Lorentz covariant

way:

1. Our first clue comes from the continuity equation (4.4). We had already seen in section

2.10, that such an equation (2.179) is Lorentz invariant provided that ⇢ and ~J can be

assembled into the components of a Lorentz 4-vector. This is indeed true in the case at

hand and will be the starting point of our discussion below.

2. Our second clue will come from looking at the potentials: both the gauge transformations

(4.7) and the wave equations (4.8) strongly suggest that � and ~A should then also be

collected into a Lorentz (co)vector.

3. Once we know how � and ~A transform under Lorentz transformations, we can also deter-

mine how ~E and ~B transform under Lorentz transformations, i.e. how they are assembled

into a Lorentz tensor (and, as we will see, the covariant formulation makes this particularly

simple).

4.3 Electric 4-Current and Lorentz Invariance of the Continuity Equation

We recall from section 2.10 that, in terms of

J
a = (c⇢, ~J) , (4.10)
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the continuity equation (4.4) can be written as (2.179)

@

@t
⇢+ ~r.~j = 0 , @aJ

a(x) = 0 . (4.11)

and that this equation is Lorentz invariant if Ja is a Lorentz 4-vector.

In order to determine the transformation behaviour of the charge density ⇢ and current density
~J under Lorentz boost transformations, it is su�cient to consider charge densities moving at

constant velocities. Our starting point and physical input will be the empirical fact that the

(di↵erential) charge dQ contained in a volume element dV is independent of its velocity. In the

restframe of the charge distribution, say, one has

dQ = ⇢0dV0 and ~J0 = 0 . (4.12)

Here ⇢0 is the rest charge density, and as such (tautologically) a scalar under Lorentz trans-

formations, much like the rest mass of a particle. In an inertial system moving relative to the

restframe at constant velocity v, one has a charge density ⇢ and a current density

~J = ⇢~v . (4.13)

Lorentz contraction

dV = �(v)�1
dV0 (4.14)

and invariance of the charge,

dQ = ⇢0dV0 = ⇢dV (4.15)

imply

⇢ = �(v)⇢0 (4.16)

(this is intuitively obvious: smaller volume leads to larger charge density) and therefore

~J = ⇢0�(v)~v . (4.17)

Thus the components of Ja are

(Ja) = (c⇢, ~J) = ⇢0(�(v)c, �(v)~v) . (4.18)

Here we recognise the components (3.5) of the Lorentz vector 4-velocity u
a,

(ua) = (�(v)c, �(v)~v) . (4.19)

Since ⇢0 is a Lorentz scalar, we have established that

J
a = ⇢0u

a (4.20)

is indeed a Lorentz 4-vector, the electric 4-current (density) of Maxwell theory. In particular,

therefore, the continuity equation is now manifestly Lorentz invariant.
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Remarks:

1. The argument given above for the 4-vector character of the current can also be applied to

(discrete or continuous) distributions of relativistic particles: also in that case, the number

density of particles ⇢ is such that ⇢/�(v) = ⇢0 is independent of the inertial system, and

therefore

(Ja) = (c⇢, ⇢~v) = ⇢0(u
a) (4.21)

is a 4-vector.

2. For later convenience, we will henceforth also absorb the annoying constant µ0 (cf. (4.8))

into the definition of the 4-current, i.e. we redefine

J
a = µ0⇢0u

a
, (4.22)

with covariant components

(Ja) = (�µ0c⇢, µ0
~J) = (�⇢/(✏0c), µ0

~J) . (4.23)

4.4 Inhomogeneous Maxwell Equations I: 4-Potential

Having identified ⇢ and ~J as components of a Lorentz 4-vector, looking back at the Maxwell

equations (4.8) and gauge transformations (4.7) strongly suggests to also combine the electric

and magnetic potentials � and ~A into a 4-component object.

Indeed, let us set

(Aa) = (��/c, ~A) . (4.24)

Then the first obervation is that the gauge transformations (4.7) can uniformly and elegantly

be written as

� ! �� @t , ~A ! ~A+ ~r , Aa ! Aa + @a (4.25)

for an arbitrary function  =  (x) on Minkowski space. We also see that the function G

introduced in (4.9) can simply be written as

G = ~r. ~A+
1

c
@t(�/c) = @aA

a (4.26)

(note that (Aa) = (+�/c, ~A)). With this, and the definition of the current Ja (including the

factor of µ0) we can write the equations of motion for the potentials (4.8) collectively and simply

as

⇤Aa � @a(@bA
b) = �Ja . (4.27)

Now, since ⇤ is a Lorentz scalar, and @a and Ja are Lorentz covectors, this equation will be

Lorentz invariant if and only if Aa transforms as a Lorentz covector (and thus @bAb is a Lorentz

scalar).

We have thus, with very little e↵ort, managed to write the inhomogeneous Maxwell equations

in a manifestly Lorentz invariant form.
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Remarks:

1. The gauge transformation behaviour (4.25)

Aa ! Aa + @a (4.28)

shows that the 4-potential should naturally be thought of as a covector Aa rather than as

a vector Aa.

2. The result (4.27) is manifestly Lorentz invariant. It is also gauge invariant, as it has to

be: under Aa ! Aa + @a one has

⇤Aa � @a(@bA
b) ! ⇤Aa +⇤@a � @a(@bA

b)� @a(@b@
b ) = ⇤Aa � @a(@bA

b) (4.29)

(because partial derivatives commute). However, gauge invariance is not yet manifest, and

we will rectify this in the next section (after having introduced the Maxwell field strength

tensor). This field strength tensor will then also allow us to immediately read o↵ the trans-

formation behaviour of the electric and magnetic fields under Lorentz transformations.

3. The term G = @bA
b by itself is evidently not gauge invariant. A convenient gauge condition

is the so-called Lorenz gauge (without the “t”, named after Ludwig Lorenz, not Hendrik

Lorentz)

G = @aA
a = 0 . (4.30)

Not only do the Maxwell equations decouple in this gauge,

G = 0 ) ⇤Aa = �Ja (4.31)

(so that the general solution can immediately be written down in terms of Greens functions

for the wave operator ⇤). This gauge condition is also the (essentially unique) gauge

condition on Aa that perserves Lorentz invariance (other common gauge conditions like

the Coulomb gauge, ~r. ~A = 0, or axial gauges like A0 = 0, are evidently not Lorentz

invariant).

4.5 Inhomogeneous Maxwell Equations II: Maxwell Field Strength Tensor

We now want to find out how to express the gauge invariant fields ~E and ~B in a Lorentz tensorial

way. To that end we start with the observation that

~E = �~r�� @t
~A , ~B = ~r⇥ ~A (4.32)

are precisely those linear combinations of the first partial derivatives of the potentials � and ~A

that are gauge invariant. Thus, as our first step we determine how the first derivatives @aAb of

Ab transform under gauge transformations:

Ab ! Ab + @b ) @aAb ! @aAb + @a@b . (4.33)

We see that in general the partial derivatives of Ab are not gauge invariant, as expected. But

the o↵ending term

@a@b = @b@a (4.34)
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has the one characteristic property that it is symmetric (because partial derivatives commute

. . . ). Therefore, we can eliminate it by taking the anti-symmetrised derivative of Ab,

Ab ! Ab + @b ) @aAb � @bAa ! @aAb � @bAa . (4.35)

These are now precisely the gauge invariant linear combinations of the first derivatives of the

potentials, and thus they must be expressible in terms of ~E and ~B (and we will verify this

shortly). In any case, this motivates us to define and introduce the Maxwell field strength

tensor

Fab = @aAb � @bAa . (4.36)

In addition to gauge invariance, Fab has the following two important properties:

• Fab is anti-symmetric, Fab = �Fba. Thus it has 6 independent components, precisely the

right number to accommodate ~E and ~B: this is how two 3-vectors can combine into a

Lorentz tensor!

• Fab is a Lorentz (0,2)-tensor, i.e. under Lorentz transformations x̄a = L
a
bx

b it transforms

as

F̄ab(x̄) = ⇤
c
a⇤

d
b Fcd(x) . (4.37)

Combining these two facts, we see that once we have determined the relation between the

components of Fab and those of ~E and ~B, the Lorentz transformation of ~E and ~B is determined

(and reduces to simple matrix multiplication).

Thus let us now determine the relation between Fab and ~E, ~B. To that end, we first write the

defining relations (4.32) in components as

Ei = �@i�� @tAi , Bi = ✏ijk@jAk , @iAj � @jAi = ✏ijkBk (4.38)

(I am deliberately not careful with the positioning of the spatial indices here, summation over

repeated indices is still understood). Now we turn to the components of Fab in this inertial

system. Since Fab is anti-symmetric, with

(Aa) = (��/c, ~A) (4.39)

the independent components are

F0i = @0Ai � @iA0 = �Ei/c = �Fi0

Fij = @iAj � @jAi = ✏ijkBk .

(4.40)

Thus, as expected, Fab can be expressed entirely and easily in terms of the electric and magnetic

fields. In matrix form, one can also write this as

(Fab) =

0

BBB@

0 �E1/c �E2/c �E3/c

+E1/c 0 +B3 �B2

+E2/c �B3 0 +B1

+E3/c +B2 �B1 0

1

CCCA
(4.41)
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It will also be useful to know the contravariant components

F
ab = ⌘

ac
⌘
bd
Fcd . (4.42)

For these one has

F
0i = �F0i , F

ij = Fij , (4.43)

and thus

(F ab) =

0

BBB@

0 +E1/c +E2/c +E3/c

�E1/c 0 +B3 �B2

�E2/c �B3 0 +B1

�E3/c +B2 �B1 0

1

CCCA
(4.44)

Next we want to write the inhomogeneous Maxwell equations (4.27)

⇤Ab � @b(@aA
a) = �Jb (4.45)

in terms of Fab. Since Fab is constructed from the first derivatives of Aa, we need to look at

first derivatives of Fab, and the result should be a covector. There is really only one possibility,

namely @
a
Fab. Working this out, one finds that on the nose

@
a
Fab = @

a
@aAb � @

a
@bAa = ⇤Ab � @b(@aA

a) . (4.46)

Thus we can write the Maxwell equations in the simple and beautiful form

@
a
Fab = �Jb , @aF

ab = �J
b
. (4.47)

This is the sought-for manifestly Lorentz and gauge invariant formulation of the Maxwell equa-

tions.

Remarks:

1. Using the explicit expression for the components of F ab given above, it is straightforward

to also verify directly that these equations are equivalent to the inhomogeneous Maxwell

equations (4.2),

@aF
ab = �J

a , ~r. ~E = ⇢/✏0 , ~r⇥ ~B � 1

c2
@t

~E = µ0
~J . (4.48)

For example,

@aF
a0 = @iF

i0 = �@iEi/c = �⇢/(✏0c) = �µ0⇢c = �J
0 (4.49)

and likewise for the spatial components @aF aj .

2. The continuity equation @aJ
a = 0 follows trivially from (4.47):

@bJ
b = �@b@aF

ab = 0 (4.50)

beacuse @b@a is symmetric (partial derivatives commute . . . ) and F
ab is anti-symmetric.
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4.6 Homogeneous Maxwell Equations I: Bianchi Identities

Looking back at the Maxwell equations recalled in section 4.1, we see that the only equations

that we have not yet cast into manifestly Lorentz-invariant form are the homogeneous equations

(4.1). One way to approach the question how to do go about this is to note that these equations

are identically satisfied once one has introduced the potentials. In the present context, we are

thus asking the question what di↵erential equations are identically satisifed by an Fab of the

form Fab = @aAb � @bAa.

• As a warm-up exercise (with one index less), let us consider the question what sort of

di↵erential equations are identically satisfied by a covector Fa = @aA. In that case the

well-known answer is that its anti-symmetrised derivative is zero

Fa = @aA ) @aFb � @bFa = @a@bA� @b@aA = 0 (4.51)

(partial derivatives commute . . . ).

• The same strategy works for Fab = @aAb � @bAa: since partial derivatives commute, the

totally anti-symmetrised derivative of Fab will be identically zero,

Fab = @aAb � @bAa ) @aFbc � @bFac + 4 more terms = 0 . (4.52)

In general, such identities, resulting from anti-symmetrisation of di↵erential operators, are

referred to as Bianchi Identities.

Using the results and notation of section 2.8, in particular the identity (2.143),

Tabc = Ta[bc] ) T[abc] =
1
3 (Tabc + Tcab + Tbca) , (4.53)

we can write this as

Fab = @aAb � @bAa ) @[aFbc] = 0 , @aFbc + @bFca + @cFab = 0 . (4.54)

The fact that the equation on the left implies the equation on the right is also easily

verified directly.

While these equations, with their 3 indices, look somewhat intransparent (and of course we

will improve that below!), already now we can verify that these are precisely 4 independent

equations, and that, with Fab expressed in terms of ~E and ~B, they reproduce precisely the

homogeneous Maxwell equations,

@aFbc + @bFca + @cFab = 0 , ~r⇥ ~E + @t
~B = 0 , ~r. ~B = 0 . (4.55)

We need to consider 3 di↵erent cases:

1. two indices are equal

We first observe that the equations on the left-hand side are empty (trivially satisfied

for any anti-symmetric Fab) if any 2 indices are equal (since the left-hand side is totally

anti-symmetric, this could hardly be otherwise). Indeed, if a = b, say, then we have

@aFac + @aFca + @cFaa = @aFac � @aFac + 0 = 0 (4.56)

identically, just by anti-symmetry of Fab. Thus all 3 indices have to be di↵erent.
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2. all indices are spatial, e.g. (a = 1, b = 2, c = 3)

In this case one has

@1F23 + @2F31 + @3F12 = ~r. ~B . (4.57)

3. one index is temporal and the others are spatial, e.g. (a = 0, b = 1, c = 2) (or essentially,

up to signs and permutations, two more possibilities)

In this case one has

@0F12 + @1F20 + @2F01 = c
�1(@t ~B +r⇥ ~E)3 (4.58)

(and likewise for the remaining components).

This establishes (4.55).

Thus we can neatly summarise basically all of Maxwell theory by

Maxwell Equations:

(
@aF

ab = �J
b

@[aFbc] = 0
(4.59)

A famous consequence of the Maxwell equations is that, in source-free regions of space(-time)

the electric and magnetic fields propagate as waves with velocity c,

⇢ = ~J = 0 ) ⇤ ~E = ⇤ ~B = 0 . (4.60)

The usual non-covariant 3-vector calculus derivation of this is somewhat roundabout, and re-

quires the full set of eight (homogeneous and inhomogeneous) Maxwell equations and judicious

use of various 3-vector calculus identities. Here is a 1-line proof of the statement

@
a
Fab = �Jb = 0 ) ⇤Fab = 0 (4.61)

in our formulation:

0 = @
c(@aFbc + @bFca + @cFab) = @a@

c
Fbc + @b@

c
Fca +⇤Fab = ⇤Fab . (4.62)

When the 4-current is not equal to zero, one has instead

⇤Fab = @bJa � @aJb . (4.63)

4.7 Homogeneous Maxwell Equations II: Dual Field Strength Tensor

While the form of the homogeneous Maxwell equation given in (4.59) is nicely manifestly Lorentz-

and gauge invariant, there is a di↵erent way of writing it which makes it more manifest that

these are indeed only precisely four equations, and which brings out a nice analogy between the

homogeneous and inhomgeneous equations.

Recall that already in ordinary 3-vector calculus, frequently, instead of anti-symmetrising ex-

plicitly, it is much more convenient to let the ✏- (or Levi-Civita) symbol ✏ijk do the job, as

in

@jAk � @kAj ! ✏ijk@jAk ⌘ Bi . (4.64)
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In particular, then the identity ~r. ~B = 0 becomes manifest because (once again . . . ) partial

derivatives commute,

@iBi = ✏ijk@i@jAk = 0 . (4.65)

In this 3-dimensional case, all the components of ✏ijk are determined by total anti-symmetry

and the choice (of orientation) ✏123 = 1,

✏ijk = ✏[ijk] , ✏123 = 1 . (4.66)

In our 4-dimensional case, we can analogously introduce a totally anti-symmetric spacetime

✏-symbol ✏abcd by

✏abcd = ✏[abcd] , ✏0123 = +1 . (4.67)

To be compatible with our conventions for raising and lowering indices, we also define ✏
abcd by

✏
abcd = ✏

[abcd]
, ✏

0123 = �1 . (4.68)

Then, letting ✏
abcd taking care of the total anti-symmetrisation, we can write the homogeneous

Maxwell equations as

@[aFcd] = 0 , ✏
abcd

@aFcd = @a(✏
abcd

Fcd) = 0 . (4.69)

We are thus led to introduce the dual Maxwell field strength tensor F̃
ab by (the factor of 1/2 is

a convenient convention)

F̃
ab = 1

2✏
abcd

Fcd . (4.70)

Then we have

@[aFcd] = 0 , @aF̃
ab = 0 , (4.71)

and it is now manifest that these are indeed precisely 4 equations.

Thus we can write the full set of Maxwell equations as

Maxwell Equations:

(
@aF

ab = �J
b

@aF̃
ab = 0

(4.72)

Remarks:

1. The dual field strength tensor F̃
ab is, i.e. transforms as, a tensor under rotations and

boosts (the transformations that we usually call Lorentz transformations), but because a

choice of orientation is involved in the definition of ✏abcd, it transforms additionally with a

sign det(L) = ±1 under general Lorentz transformations. This is just like in 3-dimensional

vector calculus, where the vector product, defined with the help of ✏ijk defines not a vector

but what is known as a pseudo-vector (sensitive to the orientation: right-hand versus left-

hand rule). For the time being, however, since we are not interested in space or time

reflections, we can ignore this subtlety.
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2. Explicitly, the components of F̃ ab are related to those of Fab e.g. by

F̃
01 = 1

2✏
01cd

Fcd = 1
2 (✏

0123
F23 + ✏

0132
F32) = ✏

0123
F23 = �F23

F̃
23 = 1

2✏
23cd

Fcd = ✏
2301

F01 = ✏
0123

F01 = �F01

(4.73)

etc. In terms of ~E and ~B this means

F̃
01 = �B1 , F̃

23 = E1/c (4.74)

etc., so that we can write F̃
ab in matrix form as

(F̃ ab) =

0

BBB@

0 �B1 �B2 �B3

+B1 0 +E3/c �E2/c

+B2 �E3/c 0 +E1/c

+B3 +E2/c �E1/c 0

1

CCCA
(4.75)

3. One can now also verify directly that

@aF̃
ab = 0 , ~r⇥ ~E + @t

~B = 0 , ~r. ~B = 0 . (4.76)

E.g.

@aF̃
a0 = @iF̃

i0 = @iBi = ~r. ~B (4.77)

(and likewise for the other components).

4. Comparison with (F ab) (4.44),

(F ab) =

0

BBB@

0 +E1/c +E2/c +E3/c

�E1/c 0 +B3 �B2

�E2/c �B3 0 +B1

�E3/c +B2 �B1 0

1

CCCA
(4.78)

shows that F̃ ab is obtained from F
ab by sending

F
ab ! F̃

ab , ~E/c ! � ~B and ~B ! ~E/c . (4.79)

Thus this exchanges the electric and magnetic fields.

5. In fact, this transformation is known as the electric-magnetic duality transformation of

Maxwell theory. You may have noticed before the curious fact that the Maxwell equations

(without electric sources) are invariant under this transformation, i.e. the homogeneous

equations get mapped to the inhomogeneous equations (without sources) and vice versa:

it is obvious that the transformation exchanges

~r. ~E = 0 $ ~r. ~B = 0 , (4.80)

but it is also true that it exchanges the remaining equations, since

~r⇥ ~B � 1

c
@t( ~E/c) $ (@t ~B + ~r⇥ ~E)/c . (4.81)
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6. In the present formulation, this duality symmetry of the vacuum equations could not be

more obvious. In the absence of electric sources, the Maxwell equations read

J
a = 0 ) @aF

ab = 0 , @aF̃
ab = 0 , (4.82)

which are manifestly invariant under the exchange F ab $ F̃
ab. Unfortunately, in the pres-

ence of sources, this nice and intriguing duality symmetry is broken by the (unexplained)

absence of magnetic monopole charges and currents in the real world.

4.8 Maxwell Theory and Lorentz Transformations I: Lorentz Scalars

Now that we know how the Maxwell field strength tensor Fab transforms under Lorentz trans-

formations, namely as a (0,2)-tensor, and how the components of Fab are related to those of ~E

and ~B, we can now easily determine the transformation behaviour of ~E and ~B under Lorentz

transformations, and we will come back to this below.

However, as always, it is useful to first think about and look for and at Lorentz scalars, i.e.

objects that are actually invariant under Lorentz transformations. With the building blocks Aa

and Fab at our disposal, one Lorentz scalar that we could construct is

AaA
a = ⌘

ab
AaAb , (4.83)

but while this is a Lorentz scalar, it is not invariant under gauge transformations, and therefore

of no interest to us. If we require gauge invariance in addition to Lorentz invariance, then we

need to work with Fab. The most obvious strategy to construct a scalar out of a (0, 2)-tensor

is (cf. the discussion in section 2.8) to take its ⌘-trace, but beacuse Fab is anti-symmetric, this

will vanish,

F
a
a ⌘ ⌘

ab
Fab = 0 . (4.84)

Thus there are no gauge invariant Lorentz scalars that are linear functions of ~E and ~B. However,

it is easy to construct a scalar that is quadratic in Fab, namely

I1 = 1
4FabF

ab = 1
4⌘

ac
⌘
bd
FabFcd (4.85)

(the factor of 1/4 is just a convention). Expressed in terms of ~E and ~B, this is

I1 = 1
4 (F0kF

0k + Fk0F
k0 + FikF

ik) = 1
2 (

~B
2 � ~E

2
/c

2) . (4.86)

The fact that this is a Lorentz scalar has some immediate consequences. Namely, if there is one

inertial system in which I1 > 0 (or I1 = 0 or I1 < 0), then in all inertial systems I1 > 0 (or

I1 = 0 or I1 < 0).

For example, consider the electromagnetic field of a charge at rest in some inertial system. In

that inertial system, ~E 6= 0 but ~B = 0. In particular, therefore, I1 is negative, I1 < 0. In some

other inertial system, it is clear that there will be both an electric and a magnetic field, but the

additional information that the invariant I1 provides us with, without any further calculation,

is that the magnetic field cannot exceed the electric field in magnitude,

I1 = Ī1 < 0 ) | ~B| < | ~E|/c . (4.87)
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There is another invariant that we can construct, namely

I2 = 1
4FabF̃

ab
. (4.88)

This is a scalar under rotations and boosts (but, like F̃
ab, transforms with the sign detL under

general more general Lorentz transformations). Expressed in terms of ~E and ~B, this is

I2 = ~B. ~E/c . (4.89)

In particular this implies that if e.g. ~B = 0 in some inertial system, then in any inertial system

the electric field will be orthogonal to the magnetic field. As regards the above example of a

moving charge, this provides us with the additional information that the magnetic field of a

moving charge will be orthogonal to its electric field.

One property of I2 that we will come back to later in our discussion of an action principle for

Maxwell theory is the fact that when Fab = @aAb � @bAa, the invariant I2 can (unlike I1) be

written as a total derivative. Indeed, writing

FabF̃
ab = 1

2✏
abcd

FabFcd = ✏
abcd

Fab@cAd , (4.90)

we see that this can be written as

FabF̃
ab = @c(✏

abcd
FabAd)� ✏

abcd(@cFab)Ad = @c(✏
abcd

FabAd) , (4.91)

where in the last step we used the Bianchi identity satisfied by Fab.

Are there any further (independent) invariants we can construct? The answer is no (and one

can prove this using group theory, but we shall not do this here). Here are some examples to

illustrate this claim:

1. The most obvious candidate for another invariant is perhaps the square of the dual field

strength tensor F̃ ab, but it is easy to see that

Ĩ1 ⌘ 1
4 F̃abF̃

ab = � 1
4FabF

ab = �I1 . (4.92)

2. Any scalar constructed from an odd number of Fab and/or F̃
ab is automatically zero

(because it can be regarded as the trace of an odd number of anti-symmetric matrices,

which is zero). For example,

I3 = F
a
bF

b
cF

c
a = 0 . (4.93)

3. Scalars constructed from an even nunmber of Fab and/or F̃
ab can be expressed in terms

of polynomials of I1 and I2. For example, for

I4 = F
ab
FbcF

cd
Fda (4.94)

one finds, after an uninspiring but straightforward calculation, something like

I4 = 8(I1)
2 + 4(I2)

2
. (4.95)
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4.9 Maxwell Theory and Lorentz Transformations II: Transformation of ~E, ~B

Finally, we turn to the simple (and purely algebraic) task of determining the transformation

behaviour of ~E and ~B under Lorentz transformations. In general we already know that Fab

transforms like a (0,2) tensor field, i.e.

x̄
a = L

a
bx

b ) F̄ab(x̄) = ⇤
c
a⇤

d
b Fcd(x) . (4.96)

As they stand, the above equations express the new fields at x̄ in terms of the old fields at x.

In order to express the new fields as functions of x̄, as one would presumably like, all one needs

to do is to write the x
a as

x
a = (L�1)abx̄

b
, (4.97)

so that

F̄ab(x̄) = ⇤
c
a⇤

d
b Fcd(L

�1
x̄) . (4.98)

Under spatial rotations, ~E and ~B transform in the familiar was as 3-vectors. Thus we only need

to look at Lorentz boosts, and without loss of generality we consider a boost in the x1-direction,

which has the form (cf. section 2.4)

(La
b) =

0

BBB@

cosh↵ � sinh↵ 0 0

� sinh↵ cosh↵ 0 0

0 0 1 0

0 0 0 1

1

CCCA
(4.99)

with

cosh↵(v) = �(v) , sinh↵(v) = �(v)�(v) . (4.100)

Therefore, ⇤ = (LT )�1 has the form

�
⇤ b
a

�
=

0

BBB@

cosh↵ sinh↵ 0 0

sinh↵ cosh↵ 0 0

0 0 1 0

0 0 0 1

1

CCCA
(4.101)

It follows that e.g. (suppressing the argument x or x̄ for simplicity and for the time being)

F̄01 = ⇤ c
0 ⇤

d
1 Fcd = (⇤ 0

0 ⇤
1
1 � ⇤ 1

0 ⇤
0
1 )F01 = F01

F̄02 = ⇤ c
0 ⇤

d
2 Fcd = ⇤ c

0 Fc2 = cosh↵F02 + sinh↵F12

F̄12 = ⇤ c
1 ⇤

d
2 Fcd = ⇤ c

1 Fc2 = sinh↵F02 + cosh↵F12

(4.102)

etc. In terms of the components of the electric and magnetic fields one thus has

Ē1 = E1 , Ē2 = �(E2 � �cB3) , Ē3 = �(E3 + �cB2)

B̄1 = B1 , B̄2 = �(B2 + �E3/c) , B̄3 = �(B3 � �E2/c)
(4.103)

We see that the “longitudinal” components of the fields are not changed by a boost, while the

transverse components are deformed.
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If we want to reinstate the dependence of the fields on the coordinates, then we proceed as in

(4.98) above. In the case at hand, since L is symmetric, the components of L�1 are just those

of ⇤.

When originally there is just an electric field, these equations simplify to

~B = 0 ) ~E = (E1, �E2, �E3) , ~B = (0,��E3/c,���E2/c) (4.104)

and one can explicitly check the assertions regarding the invariants I1 and I2 made in the

previous section, e.g. the fact that the new magnetic field is orthogonal to the new electric field.

4.10 Example: The Field of a Moving Charge (Outline)

One can now use these methods to solve in a very simple way some standard problems of

electrodynamics, e.g. to determine the electromagnetic field created by a charge or current

moving with constant velocity. To that end,

• one first solves the problem in the rest frame of the charge or current (so in this case this

is the simple electrostatics problem of determining the electric field of a static charge or a

charged wire)

• and one then applies a Lorentz transformation to this solution to obtain the electromag-

netic field of the moving charge or electric current.

The only thing one has to pay attention to is, as mentioned above, the correct assignment of

the coordinates to the fields.

Concretely, assume that a point particle with charge q is at rest at the origin of the inertial

system with coordinates x
a = (ct, ~x). Then it has a purely electric and time-independent field

given by the solution to ~r. ~E = ⇢/✏0, namely

~E(~x) = Q
~x

|~x|3 , (4.105)

where I have introduced the abbreviation

Q =
q

4⇡✏0
. (4.106)

It follows from the above formulae that in the inertial system with coordinates x̄a (with respect

to which the charge moves with constant velocity �v in the x̄1-direction, apologies for the minus

sign . . . ), the electric field is given by

Ē1(x̄) = E1(x) = Q
x
1

|~x|3

Ē2(x̄) = �E2(x) = �Q
x
2

|~x|3

Ē3(x̄) = �E3(x) = �Q
x
3

|~x|3 .

(4.107)

62



Thus all that is left to do is to express the spatial coordinates xi on the right-hand side in terms

of the spacetime coordinates x̄
a via the inverse Lorentz transformation. One can of course do

this in general but, in order to simplify the subsequent formulae, let us choose an observer at

rest in the new inertial system at a point P with spatial coordinates

x̄
i
P = (0, x̄2 = b, 0) . (4.108)

In terms of the coordinates xi, this observer has the coordinates

x
i
P = (�(v)�(v)x̄0

, b, 0) = (�(v)vt̄, b, 0) . (4.109)

In particular,

|~xP | = (�2
v
2
t̄
2 + b

2)1/2 . (4.110)

Putting everything together, we find that in the inertial system in which the observer is at rest

(and the charge moves with constant velocity), the observer sees a time-dependent electric field

given by

Ē1(x̄
i
P , t̄) = Q

�(v)vt̄

(�2v2t̄2 + b2)3/2

Ē2(x̄
i
P , t̄) = Q

�(v)b

(�2v2t̄2 + b2)3/2

Ē3(x̄
i
P , t̄) = 0 .

(4.111)

We see that the transverse component Ē2 reaches its maxmimum at the time t̄ = 0 (the time

when the distance between the charge and the observer takes on its minimal value), with

Ē2(x̄
i
P , t̄ = 0) =

Q�(v)

b2
(4.112)

proportional to �(v), and hence large for a rapidly moving charge. The longitudinal component

Ē1, on the other hand, changes sign at t̄ = 0, and it has extrema at

t̄± = ±b/

p
2v�(v) (4.113)

(so for large velocities this is a narrow time interval) with

Ē1(x̄
i
P , t̄±) = ± 2Q

3
p
3b2

(4.114)

(which is independent of ~v).

For the magnetic field, one sees that B̄1 = B̄2 = 0, but that there is a non-zero component

B̄3 = ���E2/c = ��Ē2/c (4.115)

of the magnetic field in the x
3-direction orthogonal to both the electric field and the velocity

of the charge. This reflects what is known as the Biot-Savart law of magnetostatics. For an

arbitrary direction of the velocity ~v the result can be written as

~B = (~v ⇥ ~E)/c2 . (4.116)

63



In a similar way one can determine the electromagnetic field produced by a steady (constant

velocity) current from the simple electrostatic field of a charged wire. In particular, this means

that the magnetic field generated by a current can be regarded as a relativistic e↵ect. Even

though the typical velocities in a current, of the order v ⇠ O(1mm/s) ⌧ c, are very far from

what one would usually call “relativistic velocities”, this is a very visible and common e↵ect

(electric motors!), because of the large (Avogadro-ish) number of charge carriers in a current

which all contribute to the magnetic field.

4.11 Covariant Formulation of the Lorentz Force Equation

The non-relativistic (better: Galilean relativistic) equation of motion for a massive charged

particle with mass m and charge q in an electromagnetic field is

d

dt
(m~v) = q( ~E + ~v ⇥ ~B) , (4.117)

where the force term on the right-hand side is known as the Lorentz force. Taking the scalar

product of this equation with ~v, one finds

d

dt
(m~v

2
/2) = q ~E.~v , (4.118)

which describes the change in the kinetic energy of the particle due to the work done on it by

the electric field.

We already know how to modify the left-hand side of (4.117) in order to obtain a Lorentz-

tensorial expression: we replace the velocity ~v by the 4-velocity u
a and the derivative with

respect to time by the derivative with respect to proper time,

d

dt
(m~v) ! d

dt
(m�(v)~v) =

d

dt
~p ! d

d⌧
p
a =

d

d⌧
(mu

a) . (4.119)

What about the right-hand side? In order to reproduce this we evidently need to construct a 4-

vector that is linear in Fab and linear in u
a. There are not so many possiblilities for this. In fact,

up to signs and factors the only possibility is F ab
ub. Let us calculate the spatial components of

this:

F
ib
ub = F

i0
u0 + F

ij
uj = (�Ei/c)(��(v)c) + ✏ijk�(v)v

j
B

k = �(v)( ~E + ~v ⇥ ~B)i . (4.120)

We see that, up to the �-factor, we find on the nose and very naturally the rather peculiar

Lorentz force term. We can thus write down our candidate Lorentz invariant equation of motion

for a charged particle in the Maxwell field, namely

d

d⌧
p
a = qF

ab
ub . (4.121)

In section 4.12 below, we will derive (4.121) from a Lorentz- and gauge invariant action principle

for a charged particle coupled to the Maxwell field.
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Remarks:

1. Using the fact that �(v) is the conversion factor between d⌧ and dt, we see that the spatial

components of this equation can be written as

�(v)
d

dt
~p = �(v)q( ~E + ~v ⇥ ~B) , d

dt
~p = q( ~E + ~v ⇥ ~B) (4.122)

This di↵ers from the non-relativistic equation (4.117) only by the replacement m~v ! ~p =

m�(v)~v on the left-hand side, while the right-hand Maxwell sides of the two equations are

identical. In particular, this equation has the correct non-relativistic limit.

2. We noted before, in section 3.3, that any candidate equation of the form

d

d⌧
p
a = K

a (4.123)

requires the force to be orthogonal to the 4-velocity,

d

d⌧
p
a = ma

a = K
a ) K

a
ua = 0 . (4.124)

In the case at hand, this is indeed satisfied,

K
a = qF

ab
ub ) K

a
ua = qF

ab
uaub = 0 (4.125)

by anti-symmetry of F ab and symmetry of uaub.

3. It remains to discuss the temporal component of (4.121). It can be written as

d

dt
p
0 = qF

0k
uk/�(v) = q ~E.~v/c , d

dt
E = q ~E.~v (4.126)

where E = m�(v)c2, and can therefore, exactly as (4.118), be interpreted as the change

in the energy E of the particle due to the work performed on the particle by the electric

field.

4. Just as (4.118) was implied by (4.117), in the present case (and in general for any K
a),

one has
d

d⌧
p
i = K

i ) d

d⌧
p
0 = K

0
. (4.127)

This is best understood as a consequence of the fact that the 4 components of Ka are not

independent,

K
a
ua = 0 , K

0 = �K
i
ui/u0 . (4.128)

Indeed, using the spatial components of the equation of motion, one finds an equation

which is independent of the K
a,

d

d⌧
p
0 = �K

i
ui/u0 = �(

d

d⌧
p
i)/u0 , ua

d

d⌧
p
a = 0 , (4.129)

and which is of course just the identity that 4-velocity and 4-acceleration are orthogonal,

uaa
a = 0.
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4.12 Action Principle for a Charged Particle coupled to the Maxwell Field

We now want to look at the Lorentz force equation from the point of view of an action principle.

This is rather straightforward, and it is also very instructive as it teaches us how to introduce

forces / interactions in a free (non-interacting) matter theory in a Lorentz invariant manner by

coupling the matter (here particles) to gauge fields in a Lorentz and gauge invariant way.

As a reminder, the action for a free relativistic particle was (we now use the subscript 0 on S0

to indicate that this is the free action)

S0[x] = �mc
2

Z
d⌧ . (4.130)

with

�S0[x] =

Z
d⌧

✓
� d

d⌧
pa

◆
�x

a ) d

d⌧
pa = 0 . (4.131)

We also know from the previous section that the equation of motion for a charged particle in

the Maxwell field is
d

d⌧
pa = qFabu

b = qFabẋ
b
. (4.132)

It is evident that in order to derive this equation from an action principle, we need to couple

the particle to the Maxwell field. The action will thus take the form

S[x;A] = S0[x] + SI [x;A] , (4.133)

where the 2nd term SI [x;A] describes the coupling (interaction) between particle and field, and

I use the notation S[x;A] to indicate that the action should depend on the gauge field Aa(x),

but that Aa is not, at this point, a dynamical variable that is to be varied separately. So our

aim is to determine SI [x;A].

The low-brow (and perhaps not very insightful) way to go about this is to remind oneself how

this is done in the non-relativistic case, and to then continue from there. Thus the coupling to an

electric field is simply described by adding to the Lagrangian minus the potential electrostatic

energy, which is nothing other than

V = q� (4.134)

with � the eletric potential (it is no coincidence that potentials are called potentials!). To

describe the coupling to the magnetic field, one needs to introduce a (from the point of view of

classical non-relativistic mechanics) rather peculiar velocity-dependent potential as well,

V = q�� q ~A.~v . (4.135)

Then one can show that the Euler-Lagrange equations resulting from

S =

Z
dt

⇣
m

2
~v
2 � V

⌘
(4.136)

are indeed precisely the Lorentz force equations (4.117).

One could then observe that, with our definition of Aa, the 2 terms in V can be combined into

�V = q(A0c+Aiv
i) = qAa

dx
a

dt
, (4.137)
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and one might then perhaps be led to guess that the correct relativistic interaction action is

SI [x;A]
?
= q

Z
d⌧ Aaẋ

a
. (4.138)

While this guess turns out to be correct, it is much more instructive to think about this (and

arrive at this result) in a very di↵erent way, which requires no prior non-relativistic knowledge.

Our building blocks are x
a = x

a(⌧), ẋa etc. for the particle, and Aa, Fab etc. for the Maxwell

field, and our aim is to find the simplest action that gives rise to Lorentz and gauge invariant

equations of motion (and “simplest” here means lowest number of derivatives, lowest degree

polynomial etc.).

Perhaps the simplest candidate for the interaction Lagrangian is Aax
a. This is evidently Lorentz

invariant, but equally evidently it will give rise to a contribution ⇠ Aa to the force, which is not

gauge invariant, and hence we discard it.

The next simplest term is Aaẋ
a. This is again evidently Lorentz invariant, but what about

gauge invariance? Under a gauge transformation Aa ! Aa + @a we find

Aaẋ
a ! Aaẋ

a + (@a )ẋ
a = Aaẋ

a +
d

d⌧
 . (4.139)

Thus, even though Aaẋ
a is not gauge invariant, very cooperatively Aaẋ

a is gauge invariant up

to a total derivative. Therefore the action only changes by a boundary term, and since this

has no impact on the equations of motion, this is su�cient to ensure gauge invariance of the

equations ot motion.

Therefore we postulate the action

SI [x;A] = q

Z
d⌧ Aaẋ

a
. (4.140)

We see that this agrees with the guess (4.138).

It is now straightforward to derive that the Euler-Lagrange equations derived from the action

S0[x] + SI [x;A] are indeed precisely the relativistic Lorentz force equations (4.132). Let us do

this first, and then I will add some more comments on this action.

Since we already know the variation of S0[x], we just need to determine that of SI [x;A]. For

that we use that the variation of the 4-velocity is

�ẋ
a =

d

d⌧
�x

a
, (4.141)

and that the variation of Aa(x) induced by a variation x
a ! x

a + �x
a is

�Aa = (@bAa)�x
b
. (4.142)

We will also use
d

d⌧
Aa = (@bAa)ẋ

b
. (4.143)
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With this we can calculate (using integration by parts and, as usual, dropping the boundary

term)

�

Z
d⌧ Aaẋ

a =

Z
d⌧

�
(@bAa)�x

b
ẋ
a +Aa�ẋ

a
�

=

Z
d⌧

✓
(@aAb)�x

a
ẋ
b � �x

a d

d⌧
Aa

◆

=

Z
d⌧

�
(@aAb � @bAa)�x

a
ẋ
b
�

=

Z
d⌧ Fab�x

a
ẋ
b
.

(4.144)

Thus combining this with (4.131) we find

�(S0[x] + SI [x,A]) =

Z
d⌧

✓
� d

d⌧
pa + qFabẋ

b

◆
�x

a (4.145)

and therefore the Euler-Lagrange equations are precisely the Lorentz force equations (4.132).

Remarks:

1. The rationale for introducing the charge q in front of the action (4.140) is that it is the

coupling constant, i.e. a measure of the strength of the interaction between the particle

and the Maxwell field (in particular, for an uncharged particle, q = 0, there is no such

interaction).

2. Note that the momenta pa in the above discussion are the covariant conjugate momenta of

the free particle, i.e. pa = mua. Because of the velocity dependendence of the interaction

Lagrangian, these are not the same as the covariant conjugate momenta Pa associated to

the sum of the free and interaction Lagrangian,

L = L0 + LI ) Pa =
@L

@ẋa
= pa + qAa . (4.146)

The modification of the spatial components is already familiar from non-relativistic me-

chanics. Thus the quantity of interest is the temporal component

P
0 = p

0 + qA
0 = (E + q�)/c = (m�(v)c2 + q�)/c . (4.147)

This is the total (relativistic kinetic plus electric potential) energy of the particle.

3. The interaction action can be written as just the line integral of A = Aadx
a over the

worldline (curve) C of the particle,

SI [x;A] = q

Z
d⌧ Aaẋ

a = q

Z

C
Aadx

a ⌘ q

Z

C
A . (4.148)

Since one can integrate A = Aadx
a in a natural way only over 1-dimensional spaces, this

makes it clear that the elementary objects that carry electric charge and that Aa can

couple to are objects with 1-dimensional worldlines, i.e. particles. For some comments on

generalisations of this kind of reasoning to other, more exotic, situations see section 7.1.
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4. At this point it is natural to wonder if one can derive not just the Lorentz force equation

but also the Maxwell equations themselves from an action principle. This is (of course)

indeed the case, but requires an extension of action principles and variational calculus to

field theories. This will be the subject of section 5.
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