
Solutions to Assignments 01

1. The Lorentz Group

(a) The first claim follows from multiplicativity of the determinant (and invari-

ance under transposition):

LT ηL = η ⇒ det(LT ηL) = det(η) ⇒ det(L)2 = +1 . (1)

The second claim follows fom writing (LT ηL)00 = η00 explicitly,
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(2)

(b) It is trivial to verify that

LT
1 ηL1 = η, LT

2 ηL2 = η ⇒ (L1L2)
T η(L1L2) = η . (3)

Existence of an inverse L−1 follows from detL 6= 0 (shown above). That

L ∈ L ⇒ L−1 ∈ L follows from

LTηL = η ⇔ η = (L−1)T ηL−1 . (4)

2. Tensor Algebra: Lorentz Tensors

By definition a Lorentz vector transforms as

v̄α = Lα
βv

β , (5)

and a Lorentz covector as

ūα = Λ β
α uβ , (6)

with

Λ = (LT )−1 ⇔ Λ β
α Lα

γ = δβγ . (7)

This definition is such that the contraction between a vector and a covector is a

scalar (invariant under Lorentz transformations),

ūαv̄
α = Λ β

α Lα
γuβv

γ = δβγuβv
γ = uβv

β = uαv
α . (8)

Higher rank tensors transform like products of vectors and covectors, i.e. a (p, q)

tensor transforms with p factors of L and q factors of Λ and is written as an object

with p upper indices and q lower indices.

By the same calculation as above one then finds that any contracted pair of indices

on a tensor (summation over one “upper” and one “lower” index) is invariant.

Therefore the tensor type of the resulting object can be read off just by looking at

the number of uncontracted upper and lower indices. For example:
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(a) for the contraction of a (2, 0)-tensor and a (0, 1)-tensor (covector) one has

T̄αβūβ = Lα
γL

β
δ T

γδ Λ ρ
β uρ = Lα

γ δρδ T
γδuρ = Lα

γ

(

T γδuδ

)

(9)

so that Tαβuβ transforms like (and therefore is) a (1, 0)-tensor (vector), as

indicated by the fact that this object has one free upper index.

(b) likewise the trace of a (1, 1)-tensor is a scalar,

T̄α
α = Lα

βΛ
γ
α T

β
γ = δγβ T β

γ = T β
β (10)

Note that the trace of a (0, 2)-tensor Tαβ is not well-defined without using

the Minkowski metric, i.e. something like

trace(Tαβ)
?
=

∑

α

Tαα (???) (11)

is not Lorentz-invariant and therefore depends on the inertial system in which

it is evaluated. However, with the help of the Minkowski metric one can define

a Lorentz-invariant trace (i.e. a scalar) via

Tαβ → Tα
β = ηαγTγβ → Tα

α = ηαγTγα X (12)

(“taking the trace with respect to η”). This is now manifestly a scalar.

3. Tensor Analysis: Lorentz Tensors and their Derivatives

As recalled in the previous exercise, the formalism is designed in such a way that

the transformation behaviour (tensorial nature) can just be read off from the free

indices. This extends to partial derivatives of tensors.

(a) In particular, the partial derivative (∂/∂xα) = ∂α transforms as a covector,
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∂
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α ∂β . (13)

Proof:
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(14)

It follows that the partial derivative of a scalar function f , i.e. f̄(x̄) = f(x),

is a covector.

(b) More generally, ∂α acting on a (p, q)-tensor gives a (p, q+1)-tensor. Then the

answers are immediately V α∂αf scalar, V α∂βf (1,1)-tensor, ∂αV
α scalar (the

covariant divergence), f∂αV
α scalar, ∂αVβ (0,2)-tensor, ∂α∂βf (0,2)-tensor,

and V α∂βVα covector.
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