KFT Solutions 03

1. Inhomogeneous Maxwell-Equations and Potentials

(a) Under the gauge transformation $A_{\beta} \rightarrow A_{\beta}+\partial_{\beta} \Psi, F_{\alpha \beta}$ transforms as

$$
\begin{equation*}
\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha} \rightarrow \partial_{\alpha} A_{\beta}+\partial_{\alpha} \partial_{\beta} \Psi-\partial_{\beta} A_{\alpha}-\partial_{\beta} \partial_{\alpha} \Psi=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha} \tag{1}
\end{equation*}
$$

and therefore $F_{\alpha \beta}$ is gauge-invariant.
(b) With $A_{\alpha}=(-\phi / c, \vec{A})$ one has

$$
\begin{align*}
F_{0 k} & =-F_{k 0}=\partial_{0} A_{k}-\partial_{k} A_{0}=c^{-1}\left(\partial_{t} A_{k}+\partial_{k} \phi\right)=-E_{k} / c \\
F_{i k} & =\partial_{i} A_{k}-\partial_{k} A_{i}=\epsilon_{i k \ell} B_{\ell} \quad\left(F_{12}=B_{3} \quad \text { etc. }\right) \tag{2}
\end{align*}
$$

and therefore, with $F^{\alpha \beta}=\eta^{\alpha \gamma} \eta^{\beta \delta} F_{\gamma \delta}$,

$$
\begin{equation*}
F^{0 k}=-F^{k 0}=-F_{0 k}=E_{k} / c \quad, \quad F^{i k}=F_{i k}=\epsilon_{i k \ell} B_{\ell} . \tag{3}
\end{equation*}
$$

(c) Thus, with $J^{\alpha}=(\rho c, \vec{J})$ one has

$$
\begin{equation*}
\partial_{\alpha} F^{\alpha 0}=\partial_{k} F^{k 0}=-c^{-1} \vec{\nabla} \cdot \vec{E}=-\rho /\left(\epsilon_{0} c\right)=-\mu_{0} c \rho=-\mu_{0} J^{0} \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
\partial_{\alpha} F^{\alpha 1} & =\partial_{0} F^{01}+\partial_{2} F^{21}+\partial_{3} F^{31}=c^{-2} \partial_{t} E_{1}-\partial_{2} B_{3}+\partial_{3} B_{2} \\
& =-\left(\vec{\nabla} \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}\right)_{1}=-\mu_{0} J_{1}=-\mu_{0} J^{1} \tag{5}
\end{align*}
$$

(and likewise for the 2- and 3 -components).
(d) One has

$$
\begin{equation*}
\partial_{\alpha} F^{\alpha \beta}=\partial_{\alpha} \partial^{\alpha} A^{\beta}-\partial_{\alpha} \partial^{\beta} A^{\alpha}=\square A^{\beta}-\partial^{\beta} \partial_{\alpha} A^{\alpha}=-\mu_{0} J^{\beta} \tag{6}
\end{equation*}
$$

and therefore $\square A_{\beta}-\partial_{\beta} \partial_{\alpha} A^{\alpha}=-\mu_{0} J_{\beta}$.
(e) One has

$$
\begin{equation*}
\square\left(A_{\beta}+\partial_{\beta} \Psi\right)-\partial_{\beta} \partial_{\alpha}\left(A^{\alpha}+\partial^{\alpha} \Psi\right)=\square A_{\beta}+\partial_{\beta} \square \Psi-\partial_{\beta} \partial_{\alpha} A^{\alpha}-\partial_{\beta} \square \Psi \tag{7}
\end{equation*}
$$

Since the $\square \Psi$-term cancels, the expression is gauge invariant.
(f) From $\partial_{\alpha} F^{\alpha \beta}=-\mu_{0} J^{\beta}$ one deduces $-\mu_{0} \partial_{\beta} J^{\beta}=\partial_{\beta} \partial_{\alpha} F^{\alpha \beta}=0$ because $F^{\alpha \beta}=$ $-F^{\beta \alpha}$ is anti-symmetric while $\partial_{\alpha} \partial_{\beta}=\partial_{\beta} \partial_{\alpha}$ is symmetric.

2. The Homogeneneous Maxwell-Equations

(a) One has $\partial_{\alpha} F_{\beta \gamma}=\partial_{\alpha} \partial_{\beta} A_{\gamma}-\partial_{\alpha} \partial_{\gamma} A_{\beta}$ etc. Using the fact that 2nd partial derivatives commute one deduces

$$
\begin{align*}
& \partial_{\alpha} F_{\beta \gamma}+\partial_{\gamma} F_{\alpha \beta}+\partial_{\beta} F_{\gamma \alpha} \\
= & \partial_{\alpha} \partial_{\beta} A_{\gamma}-\partial_{\gamma} \partial_{\alpha} A_{\beta}+\partial_{\gamma} \partial_{\alpha} A_{\beta}-\partial_{\beta} \partial_{\gamma} A_{\alpha}+\partial_{\beta} \partial_{\gamma} A_{\alpha}-\partial_{\alpha} \partial_{\beta} A_{\gamma}=0 \tag{8}
\end{align*}
$$

(b) $\partial_{\alpha} F_{\beta \gamma}+\partial_{\beta} F_{\gamma \alpha}+\partial_{\gamma} F_{\alpha \beta}=0$
i. Two indices equal ($\alpha=\beta$, say): $\partial_{\alpha} F_{\alpha \gamma}+\partial_{\alpha} F_{\gamma \alpha}+\partial_{\gamma} F_{\alpha \alpha}=0$ is identically satisfied because $F_{\alpha \alpha}=0, F_{\alpha \gamma}+F_{\gamma \alpha}=0$.
ii. All 3 indices spatial, $(\alpha, \beta, \gamma)=(1,2,3)$:

$$
\begin{equation*}
\partial_{1} F_{23}+\partial_{2} F_{31}+\partial_{3} F_{21}=\partial_{1} B_{1}+\partial_{2} B_{2}+\partial_{3} B_{3}=\vec{\nabla} \cdot \vec{B}=0 \tag{9}
\end{equation*}
$$

iii. One index time, the others spatial, e.g. $(\alpha, \beta, \gamma)=(0,1,2)$:

$$
\begin{equation*}
\partial_{0} F_{12}+\partial_{1} F_{20}+\partial_{2} F_{01}=c^{-1}\left(\partial_{t} B_{3}+\partial_{1} E_{2}-\partial_{2} E_{1}\right)=c^{-1}\left(\vec{\nabla} \times \vec{E}+\partial_{t} \vec{B}\right)_{3}=0 \tag{10}
\end{equation*}
$$

(and likewise for the other components).

3. The dual field strength tensor

The dual field strength tensor is defined by

$$
\begin{equation*}
\tilde{F}^{\alpha \beta}=\frac{1}{2} \epsilon^{\alpha \beta \gamma \delta} F_{\gamma \delta} . \tag{11}
\end{equation*}
$$

With $F_{0 i}=-c^{-1} E_{i}, F_{i j}=\epsilon_{i j k} B_{k}$ and $\tilde{F}^{\alpha \beta}=\frac{1}{2} \epsilon^{\alpha \beta \gamma \delta} F_{\gamma \delta}$ one gets for the non-zero components of $\tilde{F}^{\alpha \beta}$:

$$
\begin{align*}
\tilde{F}^{0 i} & =\frac{1}{2} \epsilon^{0 i \gamma \delta} F_{\gamma \delta}=\frac{1}{2} \epsilon^{0 i j k} F_{j k}=\frac{1}{2} \epsilon^{0 i j k} \epsilon_{j k l} B_{l}=-B_{i} \tag{12}\\
\tilde{F}^{i j} & =\frac{1}{2} \epsilon^{i j \gamma \delta} F_{\gamma \delta}=\epsilon^{i j 0 k} F_{0 k}=-c^{-1} \epsilon^{i j 0 k} E_{k}=c^{-1} \epsilon^{i j k} E_{k} . \tag{13}
\end{align*}
$$

The equation $\partial_{\lambda} \tilde{F}^{\lambda \delta}=0$ can then be written as

$$
\begin{align*}
\partial_{\lambda} \tilde{F}^{\lambda 0} & =-\partial_{i} \tilde{F}^{0 i}=\vec{\nabla} \cdot \vec{B}=0 \tag{14}\\
\partial_{\lambda} \tilde{F}^{\lambda j} & =\partial_{0} \tilde{F}^{0 j}+\partial_{i} \tilde{F}^{i j}=-c^{-1} \partial_{t} B_{j}-c^{-1} \epsilon_{j i k} \partial_{i} E_{k} \\
& =-\frac{1}{c}\left(\partial_{t} \vec{B}+\vec{\nabla} \times \vec{E}\right)_{j}=0, \tag{15}
\end{align*}
$$

which proves the assertion.

