KFT Solutions 04

1. Lorentz Invariants

(a)

$$
\begin{align*}
I_{1} & =\frac{1}{4} F_{\alpha \beta} F^{\alpha \beta}=\frac{1}{4}\left(F_{0 i} F^{0 i}+F_{i 0} F^{i 0}+F_{i j} F^{i j}\right) \\
& =\frac{1}{2}\left(-\left(F_{0 i}\right)^{2}+\left(F_{i j}\right)^{2}\right)=\frac{1}{2}\left(\vec{B}^{2}-c^{-2} \vec{E}^{2}\right) \tag{1}\\
I_{2} & =\frac{1}{4} F_{\alpha \beta} \tilde{F}^{\alpha \beta}=\frac{1}{4}\left(F_{0 i} \tilde{F}^{0 i}+F_{i 0} \tilde{F}^{i 0}+F_{i j} \tilde{F}^{i j}\right) \\
& =\frac{1}{4}\left(2 c^{-1} E_{i} B_{i}+\epsilon_{i j k} B_{k} c^{-1} \epsilon^{i j l} E_{l}\right)=c^{-1} \vec{E} \cdot \vec{B} \tag{2}
\end{align*}
$$

where one has used $\epsilon^{i j l} \epsilon_{i j k}=2 \delta_{k}^{l}$. If $\vec{E}=0$ in one inertial system, then $I_{1}>0$ and $I_{2}=0$ in all inertial systems, and thus $\vec{E} \cdot \vec{B}=0$ and $|\vec{E}|<|\vec{B}|$ in all inertial systems.
(b)

$$
\begin{equation*}
8 I_{2}=\epsilon^{\alpha \beta \gamma \delta} F_{\alpha \beta} F_{\gamma \delta}=2 \epsilon^{\alpha \beta \gamma \delta}\left(\partial_{\alpha} A_{\beta}\right) F_{\gamma \delta}=2 \partial_{\alpha}\left(\epsilon^{\alpha \beta \gamma \delta} A_{\beta} F_{\gamma \delta}\right) \tag{3}
\end{equation*}
$$

because $\epsilon^{\alpha \beta \gamma \delta} \partial_{\alpha} F_{\gamma \delta}=0$ (Bianchi identity). Thus I_{2} is a total derivative, $I_{2}=\partial_{\alpha} C^{\alpha} . C^{\alpha}$ is not gauge invariant but changes by a total derivative under a gauge transformation,

$$
\begin{equation*}
\epsilon^{\alpha \beta \gamma \delta} A_{\beta} F_{\gamma \delta} \rightarrow \epsilon^{\alpha \beta \gamma \delta} \partial_{\beta} \psi F_{\gamma \delta}=\partial_{\beta}\left(\epsilon^{\alpha \beta \gamma \delta} \psi F_{\gamma \delta}\right) \tag{4}
\end{equation*}
$$

2. Lorentz transformation of \vec{B} :

Using $\bar{F}_{\alpha \beta}=\Lambda_{\alpha}^{\gamma} \Lambda_{\beta}^{\delta} F_{\gamma \delta}$ one wants to compute the transformation of $\bar{F}_{i j}$ which contains the magnetic field components. To do this we need $\Lambda_{\alpha}{ }^{\beta}$ which is obtained from L_{β}^{α} by inverse transposition, which gives

$$
\left(\Lambda_{\alpha}^{\beta}\right)=\left(\begin{array}{cccc}
\cosh \alpha & \sinh \alpha & 0 & 0 \tag{5}\\
\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

With it one computes :

$$
\begin{align*}
\bar{F}_{i j} & =\Lambda_{i}^{\gamma} \Lambda_{j}^{\delta} F_{\gamma \delta}=\Lambda_{i}^{0} \Lambda_{j}^{l} F_{0 l}+\Lambda_{i}^{k} \Lambda_{j}^{0} F_{k 0}+\Lambda_{i}^{k} \Lambda_{j}^{l} F_{k l} \\
& =\left(\Lambda_{i}^{0} \Lambda_{j}^{l}-\Lambda_{i}^{l} \Lambda_{j}^{0}\right) F_{0 l}+\Lambda_{i}^{k} \Lambda_{j}^{l} F_{k l} \tag{6}
\end{align*}
$$

such that

$$
\begin{align*}
& \bar{F}_{12}=\sinh \alpha F_{02}+\cosh \alpha F_{12}=-c^{-1} \gamma \beta E_{2}+\gamma B_{3} \tag{7}\\
& \bar{F}_{23}=F_{23} \tag{8}\\
& \bar{F}_{31}=-\sinh \alpha F_{03}+\cosh \alpha F_{31}=c^{-1} \gamma \beta E_{3}+\gamma B_{2} \tag{9}
\end{align*}
$$

from which one can read off the transformation of the magnetic field :

$$
\begin{align*}
& \bar{B}_{1}=B_{1} \\
& \bar{B}_{2}=\gamma B_{2}+c^{-1} \beta \gamma E_{3} \\
& \bar{B}_{3}=\gamma B_{3}-c^{-1} \beta \gamma E_{2} \tag{10}
\end{align*}
$$

