
KFT Solutions 04

1. Lorentz Invariants
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where one has used εijlεijk = 2δlk. If ~E = 0 in one inertial system, then I1 > 0

and I2 = 0 in all inertial systems, and thus ~E. ~B = 0 and | ~E| < | ~B| in all

inertial systems.
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because εαβγδ∂αFγδ = 0 (Bianchi identity). Thus I2 is a total derivative,

I2 = ∂αC
α. Cα is not gauge invariant but changes by a total derivative

under a gauge transformation,

εαβγδAβFγδ → εαβγδ∂βψFγδ = ∂β(εαβγδψFγδ) (4)

2. Lorentz transformation of ~B:

Using F̄αβ = Λ γ
α Λ δ

β Fγδ one wants to compute the transformation of F̄ij which

contains the magnetic field components. To do this we need Λ β
α which is obtained

from Lαβ by inverse transposition, which gives
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With it one computes :
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such that

F̄12 = sinhαF02 + coshαF12 = −c−1γβE2 + γB3 (7)

F̄23 = F23 (8)

F̄31 = − sinhαF03 + coshαF31 = c−1γβE3 + γB2 (9)
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from which one can read off the transformation of the magnetic field :

B̄1 = B1

B̄2 = γB2 + c−1βγE3

B̄3 = γB3 − c−1βγE2 (10)
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