SOLUTIONS TO ASSIGNMENTS 05
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1. We first compute the variation of £[¢] = L [ &3z (VQS) :

5E[¢] = /d?’a: Vo - Vi
_ / B - (%&p) - / dr (Ap) ¢
— _/d% (Ap) ¢, (1)

where the first term in the second line vanishes because it is a boundary term
and the variation is zero on the boundary. Finally, because for an extremum the

variation has to vanish for any variation §¢, we conclude

SE[)) =0 Vép & Ap=0. (2)

2. Again we compute the variation in exactly the same way

55[®,] = /d4x [—naﬂaaqﬂa@q»b&ab—g@[ b(sqﬂ’]
1%
4 a b
— /dx S0 _aqﬂl 5b (3)

such that we can read off the equations of motion for the fields

ov

0% = 5

(4)
where ®p, = 5, P = ®°.

3. It is useful to first recall how this works in the case of classical mechanics (i.e. a
0-+1 dimensional “field theory”). Consider a Lagrangian L(q,¢;t) that is a total

time-derivative, i.e.

_OF  OF

Llawiit) = GP(@t) = G + gosit) o)

Then one has
oL 0*F 0’F |

da(t) ~ dgor " agrzi? (6)
and
oL _ oF  _ d dL _ O*F N O°F (t) 7)
2q(t) ~ dq(t) dt g(t) — otoq(t) | og(t)?"
Therefore one has
OL d oL

= 2 %2 denticall
90~ dt0q) identically (8)
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Now we consider the field theory case. We define

4 a oW OW® 0¢(x)
L= dl‘o‘W (¢52) = Oz + oo(r) Oz~
= WO+ OW D) 9)

to compute the Euler-Lagrange equations for it. One gets

OL @ 2117
d 0L d
e as B
dzP 9(9p¢) dzh <8¢W 50‘)
= 0p0,W" + 03W 056 (11)

and realizing that 9g0sW# = 9,05WF we have (10) = (11), thus the Euler-

Lagrange equations are trivially satisfied.

Remark: One can also show the converse: if a Lagrangian L gives rise to Euler-
Lagrange equations that are identically satisfied then (locally) the Lagrangian is
a total derivative. The proof is simple. Assume that L(q, ¢;t) satisfies

oL _ d oL (12)

identically. The left-hand side does evidently not depend on the acceleration §.
The right-hand side, on the other hand, will in general depend on § - unless L is
at most linear in ¢. Thus a necessary condition for L to give rise to identically

satisfied Euler-Lagrange equations is that it is of the form

L(g,4;t) = L%(g; t) + L (g 1)g - (13)
Therefore 1oL p orl ol
- . = 5 ! = a5, 76] (14)
dt 0¢ dt ot dq
and oL 0oL oLl
oL _ 9L oY . 1
9~ 0 + 9 ¢ (15)

Noting that the 2nd terms of the previous two equations are equal, the Euler-

Lagrange equations thus reduce to the condition

oLt oL®
— = (16)
ot dq
This means that locally there is a function F'(g;t) such that
L°=6,F , L'=9,F , (17)
and therefore p
L=L"+L'¢=0,F +9,Fj=—F , (18)

dt
as was to be shown. (Proof in the field theory case is analogous)



4. The Chern-Simons Action

First note that

Scs[A] = / dPx PV AL Fg,

= 2 / APz P A4, . (19)

(a) To find the equations of motion one computes the variation

6Scs[A] = 2 / B PV (§AL05A, + AydgdAL)
= 2 / B PV (§A,05A, — (05A0)0A,)
= 2 / B PV (A, — 0,A5) 6 A,
= 2 / B P Fg 64, , (20)

which implies
0Scs[A] =0 < Fg, =0. (21)

The equation of motion Fy,z = 0 is certainly gauge invariant. We now want
to know if the Chern-Simons action S¢g[A] is gauge invariant. To address
the question we perform a gauge transformation A, — A, = A, + 9,9 and

see how the Chern-Simons term changes

Scs[A']

Scs[A] + /d3l‘ eO‘BVFBV(‘)aq/}
— SeslA]+ / P 0, (9 By (22)

using eaﬁvaaFm = 0. Thus, because the second term is a total derivative
(i.e. the Lagrangian is invariant up to a total derivative), one sees that the

Chern-Simons action is gauge invariant up to boundary terms.

Combining the above result in (a) with the equations of motion of pure

Maxwell theory, the result
OnFP 4+ kPE;=0 . (23)

follows.



As an aside: the above theory with Lagrangian
L=Ly+kLes=—31F"Fo5+ 3k PV A Fp, (24)

is also known as topologically massive Maxwell theory, since the CS term provides
a “topological” gauge-invariant mass term for the photon (note that a mass term
like m?A, A, like in the KLein-Gordon equation, would not be gauge invariant -
which is why it is usually claimed that the masslessness of the photon is due to

gauge invariance).

One quick way to see this is to introduce the dual of the field strength
GP = 1ePF.; (25)
in terms of which the equations of motion and the Bianchi identity take the form
0aGg — 05Go = 2k €4, GY , 05GP =0 (26)

respectively. Acting with 9% on the equation of motion and using the Bianchi

identity and again the equation of motion one finds

OGg = 2k €apy0°G7 = k eapy (0°G7 — O7G®)

27
= 2k? eagfyeaw Gs = 4/<:2G5 (27)

so that the theory indeed describes excitations of mass m? = 4k2.



