Solutions to Assignments 06

1. Noether Current and Noether Energy-Momentum Tensor for Field Theories
(a) A rotation in the Φ_{1}, Φ_{2} field space is

$$
\binom{\Phi_{1}}{\Phi_{2}} \rightarrow\left(\begin{array}{cc}
\cos \gamma & \sin \gamma \tag{1}\\
-\sin \gamma & \cos \gamma
\end{array}\right)\binom{\Phi_{1}}{\Phi_{2}}
$$

Therefore an infinitesimal rotation in the Φ_{1}, Φ_{2} field space reads

$$
\begin{align*}
\Delta \Phi_{1} & =\gamma \Phi_{2} \\
\Delta \Phi_{2} & =-\gamma \Phi_{1} \tag{2}
\end{align*}
$$

Under such a transformation, the potential $V\left(\Phi_{1}^{2}+\Phi_{2}^{2}\right)$ is trivially invariant and the kinetic term can also be seen to be invariant,

$$
\begin{equation*}
\Delta S_{\text {kin }}=-\frac{1}{2} \int d^{4} x 2\left(\partial_{\alpha} \Phi_{1} \partial^{\alpha} \gamma \Phi_{2}-\partial_{\alpha} \gamma \Phi_{1} \partial^{\alpha} \Phi_{2}\right)=0 \quad \Rightarrow \quad \Delta S=0 \tag{3}
\end{equation*}
$$

The current in given by

$$
\begin{equation*}
J_{\Delta}^{\alpha}=\frac{\partial L}{\partial\left(\partial_{\alpha} \Phi_{a}\right)} \Delta \Phi_{a}=-\gamma\left(\Phi_{1} \partial^{\alpha} \Phi_{2}-\Phi_{2} \partial^{\alpha} \Phi_{1}\right) \tag{4}
\end{equation*}
$$

and for a solution Φ_{a} to the equations of motions

$$
\begin{equation*}
\square \Phi_{a}=\frac{\partial V}{\partial \Phi_{a}}=2 V^{\prime}\left(\Phi_{1}^{2}+\Phi_{2}^{2}\right) \Phi_{a} \tag{5}
\end{equation*}
$$

one can explicitly check that

$$
\begin{align*}
\partial_{\alpha} J_{\Delta}^{\alpha} & =-\gamma\left(\partial_{\alpha} \Phi_{1} \partial^{\alpha} \Phi_{2}+\Phi_{1} \square \Phi_{2}-\partial_{\alpha} \Phi_{2} \partial^{\alpha} \Phi_{1}-\Phi_{2} \square \Phi_{1}\right) \\
& =-2 \gamma\left(\Phi_{1} \Phi_{2}-\Phi_{2} \Phi_{1}\right) V^{\prime}\left(\Phi_{1}^{2}+\Phi_{2}^{2}\right) \\
& =0 \tag{6}
\end{align*}
$$

(b) The canonical (Noether) Energy-Momentum Tensor (or Stress-Energy tensor) is given by

$$
\begin{equation*}
\theta_{\beta}^{\alpha}=-\partial^{\alpha} \Phi_{a} \partial_{\beta} \Phi_{a}+\delta_{\beta}^{\alpha}\left(\frac{1}{2} \partial^{\gamma} \Phi_{a} \partial_{\gamma} \Phi_{a}+V\left(\Phi_{a}\right)\right) \tag{7}
\end{equation*}
$$

It is conserved for Φ_{a} a solution to the equations of motion $\square \Phi_{a}=\frac{\partial V}{\partial \Phi_{a}}$:

$$
\begin{align*}
\partial_{\alpha} \theta_{\beta}^{\alpha} & =-\square \Phi_{a} \partial_{\beta} \Phi_{a}-\partial^{\alpha} \Phi_{a} \partial_{\alpha} \partial_{\beta} \Phi_{a}+\partial^{\gamma} \Phi_{a} \partial_{\beta} \partial_{\gamma} \Phi_{a}+\partial_{\beta} V\left(\Phi_{a}\right) \\
& =-\frac{\partial V}{\partial \Phi_{a}} \partial_{\beta} \Phi_{a}+\partial_{\beta} V\left(\Phi_{a}\right)=0 \tag{8}
\end{align*}
$$

2. The Maxwell Energy-Momentum Tensor
(a) The trace of T_{β}^{α} is

$$
\begin{equation*}
T_{\alpha}^{\alpha}=-F^{\alpha \gamma} F_{\alpha \gamma}+\frac{1}{4} \delta_{\alpha}^{\alpha} F_{\gamma \delta} F^{\gamma \delta}=-F^{\alpha \gamma} F_{\alpha \gamma}+F_{\gamma \delta} F^{\gamma \delta}=0 . \tag{9}
\end{equation*}
$$

Then one shows that $T_{\alpha \beta}$ is symmetric computing

$$
\begin{equation*}
T_{\alpha \beta}=\eta_{\alpha \gamma} T_{\beta}^{\gamma}=-F_{\alpha}{ }^{\rho} F_{\beta \rho}+\frac{1}{4} \eta_{\alpha \beta} F_{\rho \delta} F^{\rho \delta}, \tag{10}
\end{equation*}
$$

and using the fact that $\eta_{\alpha \beta}$ and $F_{\alpha}{ }^{\rho} F_{\beta \rho}=F_{\alpha \rho} F_{\beta}{ }^{\rho}=F_{\beta}{ }^{\rho} F_{\alpha \rho}$ are symmetric.
(b) The component T_{0}^{0} is

$$
\begin{align*}
T_{0}^{0} & =-F^{0 i} F_{0 i}+\frac{1}{4} F_{\gamma \delta} F^{\gamma \delta} \\
& =-\left(c^{-1} E^{i}\right)\left(-c^{-1} E_{i}\right)+\frac{1}{2}\left(B^{2}-c^{-2} E^{2}\right)=\frac{1}{2}\left(E^{2} / c^{2}+B^{2}\right), \tag{11}
\end{align*}
$$

where $\frac{1}{4} F_{\gamma \delta} F^{\gamma \delta}$ has been computed in assignments 04 (exercise 1). The component T_{0}^{k} is

$$
\begin{align*}
T_{0}^{k} & =-F^{k \gamma} F_{0 \gamma}=-F^{k j} F_{0 j} \\
& =\epsilon_{k j i} B_{i} c^{-1} E_{j}=c^{-1} \epsilon_{k j i} E_{j} B_{i}=S_{k} / c=S^{k} / c \tag{12}
\end{align*}
$$

(c) One easily computes (Lines $1+2$)

$$
\begin{align*}
\partial_{\alpha} T^{\alpha \beta} & =-F^{\beta}{ }_{\gamma} \partial_{\alpha} F^{\alpha \gamma}-F^{\alpha \gamma} \partial_{\alpha} F^{\beta}{ }_{\gamma}+\frac{1}{2} \eta^{\alpha \beta} F^{\gamma \delta} \partial_{\alpha} F_{\gamma \delta} \\
& =J_{\gamma} F^{\beta \gamma}+\eta^{\beta \lambda} F^{\gamma \delta} \partial_{\delta} F_{\lambda \gamma}+\frac{1}{2} \eta^{\lambda \beta} F^{\gamma \delta} \partial_{\lambda} F_{\gamma \delta} \tag{13}
\end{align*}
$$

where the Maxwell equation $\partial_{\alpha} F^{\alpha \gamma}=-J^{\gamma}$ was used in the 1st term, and some indices have been relabelled in the 2nd term to make it more similar to the 3 rd term. Now we can use the antisymmetry of $F^{\gamma \delta}$ to rewrite the 2 nd term as (Line 3)

$$
\begin{equation*}
\eta^{\beta \lambda} F^{\gamma \delta} \partial_{\delta} F_{\lambda \gamma}=\frac{1}{2} \eta^{\beta \lambda} F^{\gamma \delta}\left(\partial_{\delta} F_{\lambda \gamma}-\partial_{\gamma} F_{\lambda \delta}\right) . \tag{14}
\end{equation*}
$$

Plugging this into the previous result and using the homogeneous Maxwell equations, one finds (Line 4)

$$
\begin{equation*}
\partial_{\alpha} T^{\alpha \beta}=-J_{\gamma} F^{\gamma \beta}+\frac{1}{2} \eta^{\lambda \beta} F^{\gamma \delta}\left(\partial_{\lambda} F_{\gamma \delta}+\partial_{\delta} F_{\lambda \gamma}+\partial_{\gamma} F_{\delta \lambda}\right)=-J_{\gamma} F^{\gamma \beta} . \tag{15}
\end{equation*}
$$

