
Solutions to Assignments 05

1. We first compute the variation of E [φ] = 1
2

∫
d3x

(
~∇φ
)2

:

δE [φ] =

∫
d3x ~∇φ · ~∇δφ

=

∫
d3x ~∇ ·

(
~∇φδφ

)
−
∫
d3x (∆φ) δφ

= −
∫
d3x (∆φ) δφ , (1)

where the first term in the second line vanishes because it is a boundary term
and the variation is zero on the boundary. Finally, because for an extremum the
variation has to vanish for any variation δφ, we conclude

δE [φ] = 0 ∀ δφ ⇔ ∆φ = 0 . (2)

2. Again we compute the variation in exactly the same way

δS[Φa] =

∫
d4x

[
−ηαβ∂αΦa∂βδΦ

bδab −
∂V

∂Φb
δΦb

]
=

∫
d4x

[
δab2Φa − ∂V

∂Φb

]
δΦb , (3)

such that we can read off the equations of motion for the fields

2Φb =
∂V

∂Φb
, (4)

where Φb = δabΦ
a ≡ Φb.

3. It is useful to first recall how this works in the case of classical mechanics (i.e. a
0+1 dimensional “field theory”). Consider a Lagrangian L(q, q̇; t) that is a total
time-derivative, i.e.

L(q, q̇; t) =
d

dt
F (q; t) =

∂F

∂t
+

∂F

∂q(t)
q̇(t) . (5)

Then one has
∂L

∂q(t)
=

∂2F

∂q(t)∂t
+

∂2F

∂q(t)2
q̇(t) (6)

and
∂L

∂q̇(t)
=

∂F

∂q(t)
⇒ d

dt

∂L

∂q̇(t)
=

∂2F

∂t∂q(t)
+

∂2F

∂q(t)2
q̇(t) (7)

Therefore one has
∂L

∂q(t)
=

d

dt

∂L

∂q̇(t)
identically (8)
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Now we consider the field theory case. We define

L :=
d

dxα
Wα(φ;x) =

∂Wα

∂xα
+
∂Wα

∂φ(x)

∂φ(x)

∂xα

= ∂αW
α + ∂φW

α∂αφ (9)

to compute the Euler-Lagrange equations for it. One gets

∂L

∂φ
= ∂φ∂αW

α + ∂2φW
α∂αφ (10)

d

dxβ
∂L

∂(∂βφ)
=

d

dxβ

(
∂φW

αδ βα

)
= ∂β∂φW

β + ∂2φW
β∂βφ , (11)

and realizing that ∂β∂φW β = ∂φ∂βW
β we have (10) = (11), thus the Euler-

Lagrange equations are trivially satisfied.

Remark: One can also show the converse: if a Lagrangian L gives rise to Euler-
Lagrange equations that are identically satisfied then (locally) the Lagrangian is
a total derivative. The proof is simple. Assume that L(q, q̇; t) satisfies

∂L

∂q
≡ d

dt

∂L

∂q̇
(12)

identically. The left-hand side does evidently not depend on the acceleration q̈.
The right-hand side, on the other hand, will in general depend on q̈ - unless L is
at most linear in q̇. Thus a necessary condition for L to give rise to identically
satisfied Euler-Lagrange equations is that it is of the form

L(q, q̇; t) = L0(q; t) + L1(q; t)q̇ . (13)

Therefore
d

dt

∂L

∂q̇
=

d

dt
L1 =

∂L1

∂t
+
∂L1

∂q
q̇ (14)

and
∂L

∂q
=
∂L0

∂q
+
∂L1

∂q
q̇ . (15)

Noting that the 2nd terms of the previous two equations are equal, the Euler-
Lagrange equations thus reduce to the condition

∂L1

∂t
=
∂L0

∂q
. (16)

This means that locally there is a function F (q; t) such that

L0 = ∂tF , L1 = ∂qF , (17)

and therefore
L = L0 + L1q̇ = ∂tF + ∂qF q̇ =

d

dt
F , (18)

as was to be shown. (Proof in the field theory case is analogous)
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