Solutions to Assignments 05

1. We first compute the variation of $\mathcal{E}[\phi]=\frac{1}{2} \int d^{3} x(\vec{\nabla} \phi)^{2}$:

$$
\begin{align*}
\delta \mathcal{E}[\phi] & =\int d^{3} x \vec{\nabla} \phi \cdot \vec{\nabla} \delta \phi \\
& =\int d^{3} x \vec{\nabla} \cdot(\vec{\nabla} \phi \delta \phi)-\int d^{3} x(\Delta \phi) \delta \phi \\
& =-\int d^{3} x(\Delta \phi) \delta \phi, \tag{1}
\end{align*}
$$

where the first term in the second line vanishes because it is a boundary term and the variation is zero on the boundary. Finally, because for an extremum the variation has to vanish for any variation $\delta \phi$, we conclude

$$
\begin{equation*}
\delta \mathcal{E}[\phi]=0 \quad \forall \delta \phi \quad \Leftrightarrow \Delta \phi=0 \tag{2}
\end{equation*}
$$

2. Again we compute the variation in exactly the same way

$$
\begin{align*}
\delta S\left[\Phi_{a}\right] & =\int d^{4} x\left[-\eta^{\alpha \beta} \partial_{\alpha} \Phi^{a} \partial_{\beta} \delta \Phi^{b} \delta_{a b}-\frac{\partial V}{\partial \Phi^{b}} \delta \Phi^{b}\right] \\
& =\int d^{4} x\left[\delta_{a b} \square \Phi^{a}-\frac{\partial V}{\partial \Phi^{b}}\right] \delta \Phi^{b}, \tag{3}
\end{align*}
$$

such that we can read off the equations of motion for the fields

$$
\begin{equation*}
\square \Phi_{b}=\frac{\partial V}{\partial \Phi^{b}}, \tag{4}
\end{equation*}
$$

where $\Phi_{b}=\delta_{a b} \Phi^{a} \equiv \Phi^{b}$.
3. It is useful to first recall how this works in the case of classical mechanics (i.e. a $0+1$ dimensional "field theory"). Consider a Lagrangian $L(q, \dot{q} ; t)$ that is a total time-derivative, i.e.

$$
\begin{equation*}
L(q, \dot{q} ; t)=\frac{d}{d t} F(q ; t)=\frac{\partial F}{\partial t}+\frac{\partial F}{\partial q(t)} \dot{q}(t) . \tag{5}
\end{equation*}
$$

Then one has

$$
\begin{equation*}
\frac{\partial L}{\partial q(t)}=\frac{\partial^{2} F}{\partial q(t) \partial t}+\frac{\partial^{2} F}{\partial q(t)^{2}} \dot{q}(t) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial \dot{q}(t)}=\frac{\partial F}{\partial q(t)} \quad \Rightarrow \quad \frac{d}{d t} \frac{\partial L}{\partial \dot{q}(t)}=\frac{\partial^{2} F}{\partial t \partial q(t)}+\frac{\partial^{2} F}{\partial q(t)^{2}} \dot{q}(t) \tag{7}
\end{equation*}
$$

Therefore one has

$$
\begin{equation*}
\frac{\partial L}{\partial q(t)}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}(t)} \quad \text { identically } \tag{8}
\end{equation*}
$$

Now we consider the field theory case. We define

$$
\begin{align*}
L:=\frac{d}{d x^{\alpha}} W^{\alpha}(\phi ; x) & =\frac{\partial W^{\alpha}}{\partial x^{\alpha}}+\frac{\partial W^{\alpha}}{\partial \phi(x)} \frac{\partial \phi(x)}{\partial x^{\alpha}} \\
& =\partial_{\alpha} W^{\alpha}+\partial_{\phi} W^{\alpha} \partial_{\alpha} \phi \tag{9}
\end{align*}
$$

to compute the Euler-Lagrange equations for it. One gets

$$
\begin{align*}
\frac{\partial L}{\partial \phi} & =\partial_{\phi} \partial_{\alpha} W^{\alpha}+\partial_{\phi}^{2} W^{\alpha} \partial_{\alpha} \phi \tag{10}\\
\frac{d}{d x^{\beta}} \frac{\partial L}{\partial\left(\partial_{\beta} \phi\right)} & =\frac{d}{d x^{\beta}}\left(\partial_{\phi} W^{\alpha} \delta_{\alpha}^{\beta}\right) \\
& =\partial_{\beta} \partial_{\phi} W^{\beta}+\partial_{\phi}^{2} W^{\beta} \partial_{\beta} \phi \tag{11}
\end{align*}
$$

and realizing that $\partial_{\beta} \partial_{\phi} W^{\beta}=\partial_{\phi} \partial_{\beta} W^{\beta}$ we have (10) $=(11)$, thus the EulerLagrange equations are trivially satisfied.
Remark: One can also show the converse: if a Lagrangian L gives rise to EulerLagrange equations that are identically satisfied then (locally) the Lagrangian is a total derivative. The proof is simple. Assume that $L(q, \dot{q} ; t)$ satisfies

$$
\begin{equation*}
\frac{\partial L}{\partial q} \equiv \frac{d}{d t} \frac{\partial L}{\partial \dot{q}} \tag{12}
\end{equation*}
$$

identically. The left-hand side does evidently not depend on the acceleration \ddot{q}. The right-hand side, on the other hand, will in general depend on \ddot{q} - unless L is at most linear in \dot{q}. Thus a necessary condition for L to give rise to identically satisfied Euler-Lagrange equations is that it is of the form

$$
\begin{equation*}
L(q, \dot{q} ; t)=L^{0}(q ; t)+L^{1}(q ; t) \dot{q} \tag{13}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\frac{d}{d t} L^{1}=\frac{\partial L^{1}}{\partial t}+\frac{\partial L^{1}}{\partial q} \dot{q} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial q}=\frac{\partial L^{0}}{\partial q}+\frac{\partial L^{1}}{\partial q} \dot{q} \tag{15}
\end{equation*}
$$

Noting that the 2 nd terms of the previous two equations are equal, the EulerLagrange equations thus reduce to the condition

$$
\begin{equation*}
\frac{\partial L^{1}}{\partial t}=\frac{\partial L^{0}}{\partial q} \tag{16}
\end{equation*}
$$

This means that locally there is a function $F(q ; t)$ such that

$$
\begin{equation*}
L^{0}=\partial_{t} F \quad, \quad L^{1}=\partial_{q} F \tag{17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
L=L^{0}+L^{1} \dot{q}=\partial_{t} F+\partial_{q} F \dot{q}=\frac{d}{d t} F \tag{18}
\end{equation*}
$$

as was to be shown. (Proof in the field theory case is analogous)

