
Solutions to Assignments 01

1. The Lorentz Group The first claim follows from multiplicativity of the deter-
minant (and invariance under transposition):

LT ηL = η ⇒ det(LT ηL) = det(η) ⇒ det(L)2 = +1 . (1)

The second claim follows fom writing (LT ηL)00 = η00 explicitly,
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Remark: It is trivial to verify that

LT1 ηL1 = η, LT2 ηL2 = η ⇒ (L1L2)
T η(L1L2) = η . (3)

Existence of an inverse L−1 follows from detL 6= 0 (shown above). That L ∈ L ⇒
L−1 ∈ L follows from

LT ηL = η ⇔ η = (L−1)T ηL−1 . (4)

Thus Lorentz transformations indeed form a group.

2. Tensor Algebra: Lorentz Tensors

By definition a Lorentz vector transforms as

v̄α = Lαβv
β , (5)

and a Lorentz covector as
ūα = Λ β

α uβ , (6)

with
Λ = (LT )−1 ⇔ Λ β

α L
α
γ = δβγ . (7)

This definition is such that the contraction between a vector and a covector is a
scalar (invariant under Lorentz transformations),

ūαv̄
α = Λ β

α L
α
γuβv

γ = δβγuβv
γ = uβv

β = uαv
α . (8)

Higher rank tensors transform like products of vectors and covectors, i.e. a (p, q)

tensor transforms with p factors of L and q factors of Λ and is written as an object
with p upper indices and q lower indices.

By the same calculation as above one then finds that any contracted pair of indices
on a tensor (summation over one “upper” and one “lower” index) is invariant.
Therefore the tensor type of the resulting object can be read off just by looking at
the number of uncontracted upper and lower indices. For example:
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(a) for the contraction of a (2, 0)-tensor and a (0, 1)-tensor (covector) one has

T̄αβūβ = LαγL
β
δ T

γδ Λ ρ
β uρ = Lαγ δ

ρ
δ T

γδuρ = Lαγ

(
T γδuδ

)
(9)

so that Tαβuβ transforms like (and therefore is) a (1, 0)-tensor (vector), as
indicated by the fact that this object has one free upper index.

(b) likewise the trace of a (1, 1)-tensor is a scalar,

T̄αα = LαβΛ γ
α T

β
γ = δγβ T

β
γ = T ββ (10)

Note that the trace of a (0, 2)-tensor Tαβ is not well-defined without using
the Minkowski metric, i.e. something like

trace(Tαβ)
?
=
∑
α

Tαα (???) (11)

is not Lorentz-invariant and therefore depends on the inertial system in which
it is evaluated. However, with the help of the Minkowski metric one can define
a Lorentz-invariant trace (i.e. a scalar) via

Tαβ → Tαβ = ηαγTγβ → Tαα = ηαγTγα X (12)

(“taking the trace with respect to η”). This is now manifestly a scalar.

3. Tensor Analysis: Lorentz Tensors and their Derivatives

As recalled in the previous exercise, the formalism is designed in such a way that
the transformation behaviour (tensorial nature) can just be read off from the free
indices. This extends to partial derivatives of tensors.

(a) Set
∂
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We will show that M = Λ. To that end, use the chain rule to write
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and plug this into the previous equation,
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to conclude
M β
α L

γ
β = δγα ⇔ M β

α = Λ β
α . (16)

It follows that the partial derivative of a scalar function f , i.e. f̄(x̄) = f(x),
is a covector, and we will abbreviate it by ∂αf etc.

(b) More generally, ∂α acting on a (p, q)-tensor gives a (p, q+1)-tensor. Then the
answers are immediately V α∂αf scalar, V α∂βf (1,1)-tensor, ∂αV α scalar (the
covariant divergence), f∂αV α scalar, ∂αVβ (0,2)-tensor, ∂α∂βf (0,2)-tensor,
and V α∂βVα covector.
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