## KFT Solutions 04

## 1. The Homogeneneous Maxwell-Equations

(a) One has $\partial_{a} F_{b c}=\partial_{a} \partial_{b} A_{c}-\partial_{a} \partial_{c} A_{b}$ etc. Using the fact that 2nd partial derivatives commute one deduces

$$
\begin{equation*}
\partial_{a} F_{b c}+\partial_{b} F_{c a}+\partial_{c} F_{a b}=\partial_{a} \partial_{b} A_{c}-\partial_{a} \partial_{c} A_{b}+\partial_{b} \partial_{c} A_{a}-\partial_{b} \partial_{a} A_{c}+\partial_{c} \partial_{a} A_{b}-\partial_{c} \partial_{b} A_{a}=0 \tag{1}
\end{equation*}
$$

(b) $\partial_{a} F_{b c}+\partial_{b} F_{c a}+\partial_{c} F_{a b}=0$
i. Two indices equal $(a=b$, say $): \partial_{a} F_{a c}+\partial_{a} F_{c a}+\partial_{c} F_{a a}=0$ is identically satisfied because $F_{\alpha \alpha}=0, F_{\alpha \gamma}+F_{\gamma \alpha}=0$.
ii. All 3 indices spatial, $(a, b, c)=(1,2,3)$ :

$$
\begin{equation*}
\partial_{1} F_{23}+\partial_{2} F_{31}+\partial_{3} F_{21}=\partial_{1} B_{1}+\partial_{2} B_{2}+\partial_{3} B_{3}=\vec{\nabla} \cdot \vec{B}=0 \tag{2}
\end{equation*}
$$

iii. One index time, the others spatial, e.g. $(\alpha, \beta, \gamma)=(0,1,2)$ :

$$
\begin{equation*}
\partial_{0} F_{12}+\partial_{1} F_{20}+\partial_{2} F_{01}=c^{-1}\left(\partial_{t} B_{3}+\partial_{1} E_{2}-\partial_{2} E_{1}\right)=c^{-1}\left(\vec{\nabla} \times \vec{E}+\partial_{t} \vec{B}\right)_{3}=0 \tag{3}
\end{equation*}
$$

(and likewise for the other components).
2. The dual field strength tensor

The dual field strength tensor is defined by

$$
\begin{equation*}
\tilde{F}^{a b}=\frac{1}{2} \epsilon^{a b c d} F_{c d} . \tag{4}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \tilde{F}^{01}=\frac{1}{2} \epsilon^{01 c d} F_{c d}=\frac{1}{2}\left(\epsilon^{0123} F_{23}+\epsilon^{0132} F_{32}\right)=\epsilon^{0123} F_{23}=-F_{23} \\
& \tilde{F}^{23}=\frac{1}{2} \epsilon^{23 c d} F_{c d}=\epsilon^{2301} F_{01}=\epsilon^{0123} F_{01}=-F_{01} \tag{5}
\end{align*}
$$

etc. In terms of $\vec{E}$ and $\vec{B}$ this means

$$
\begin{equation*}
\tilde{F}^{01}=-B_{1} \quad, \quad \tilde{F}^{23}=E_{1} / c \tag{6}
\end{equation*}
$$

etc. The equation $\partial_{a} \tilde{F}^{a b}=0$ can then be written as

$$
\begin{align*}
\partial_{a} \tilde{F}^{a 0} & =\partial_{i} \tilde{F}^{i 0}=\vec{\nabla} \cdot \vec{B}=0  \tag{7}\\
\partial_{a} \tilde{F}^{a j} & =\partial_{0} \tilde{F}^{0 j}+\partial_{i} \tilde{F}^{i j}=-c^{-1} \partial_{t} B_{j}-c^{-1} \epsilon_{j i k} \partial_{i} E_{k} \\
& =-\frac{1}{c}\left(\partial_{t} \vec{B}+\vec{\nabla} \times \vec{E}\right)_{j}=0, \tag{8}
\end{align*}
$$

which proves the assertion.

## 3. Lorentz Invariants

Using $\epsilon^{i j l} \epsilon_{i j k}=2 \delta_{k}^{l}$, one has

$$
\begin{align*}
I_{1} & =\frac{1}{4} F_{a b} F^{a b}=\frac{1}{4}\left(F_{0 i} F^{0 i}+F_{i 0} F^{i 0}+F_{i j} F^{i j}\right)=\frac{1}{2}\left(\vec{B}^{2}-c^{-2} \vec{E}^{2}\right)  \tag{9}\\
I_{2} & =\frac{1}{4} F_{a b} \tilde{F}^{a b}=\frac{1}{4}\left(F_{0 i} \tilde{F}^{0 i}+F_{i 0} \tilde{F}^{i 0}+F_{i j} \tilde{F}^{i j}\right) \\
& =\frac{1}{4}\left(2 c^{-1} E_{i} B_{i}+\epsilon_{i j k} B_{k} c^{-1} \epsilon^{i j l} E_{l}\right)=c^{-1} \vec{E} \cdot \vec{B} \tag{10}
\end{align*}
$$

If $\vec{E}=0$ in one inertial system, then $I_{1}>0$ and $I_{2}=0$ in all inertial systems, and thus $\vec{E} \cdot \vec{B}=0$ and $|\vec{E} / c|<|\vec{B}|$ in all inertial systems.

