## Solutions to Assignments 05

1. It is useful to first recall how this works in the case of classical mechanics (i.e. a $0+1$ dimensional "field theory"). Consider a Lagrangian $L(q, \dot{q} ; t)$ that is a total time-derivative, i.e.

$$
\begin{equation*}
L(q, \dot{q} ; t)=\frac{d}{d t} F(q ; t)=\frac{\partial F}{\partial t}+\frac{\partial F}{\partial q(t)} \dot{q}(t) . \tag{1}
\end{equation*}
$$

Then one has

$$
\begin{equation*}
\frac{\partial L}{\partial q(t)}=\frac{\partial^{2} F}{\partial q(t) \partial t}+\frac{\partial^{2} F}{\partial q(t)^{2}} \dot{q}(t) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial \dot{q}(t)}=\frac{\partial F}{\partial q(t)} \quad \Rightarrow \quad \frac{d}{d t} \frac{\partial L}{\partial \dot{q}(t)}=\frac{\partial^{2} F}{\partial t \partial q(t)}+\frac{\partial^{2} F}{\partial q(t)^{2}} \dot{q}(t) \tag{3}
\end{equation*}
$$

Therefore one has

$$
\begin{equation*}
\frac{\partial L}{\partial q(t)}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}(t)} \quad \text { identically } \tag{4}
\end{equation*}
$$

Now we consider the field theory case. We define

$$
\begin{align*}
L:=\frac{d}{d x^{a}} W^{a}(\phi ; x) & =\frac{\partial W^{a}}{\partial x^{a}}+\frac{\partial W^{a}}{\partial \phi(x)} \frac{\partial \phi(x)}{\partial x^{a}} \\
& =\partial_{a} W^{a}+\partial_{\phi} W^{a} \partial_{a} \phi \tag{5}
\end{align*}
$$

to compute the Euler-Lagrange equations for it. One gets

$$
\begin{align*}
\frac{\partial L}{\partial \phi} & =\partial_{\phi} \partial_{a} W^{a}+\partial_{\phi}^{2} W^{a} \partial_{a} \phi  \tag{6}\\
\frac{d}{d x^{b}} \frac{\partial L}{\partial\left(\partial_{b} \phi\right)} & =\frac{d}{d x^{b}}\left(\partial_{\phi} W^{a} \delta_{a}^{b}\right) \\
& =\partial_{b} \partial_{\phi} W^{b}+\partial_{\phi}^{2} W^{b} \partial_{b} \phi . \tag{7}
\end{align*}
$$

Thus (since partial derivatives commute) the Euler-Lagrange equations are satisfied identically.

Remark: One can also show the converse: if a Lagrangian $L$ gives rise to EulerLagrange equations that are identically satisfied then (locally) the Lagrangian is a total derivative. The proof is simple. Assume that $L(q, \dot{q} ; t)$ satisfies

$$
\begin{equation*}
\frac{\partial L}{\partial q} \equiv \frac{d}{d t} \frac{\partial L}{\partial \dot{q}} \tag{8}
\end{equation*}
$$

identically. The left-hand side does evidently not depend on the acceleration $\ddot{q}$. The right-hand side, on the other hand, will in general depend on $\ddot{q}$ - unless $L$ is at most linear in $\dot{q}$. Thus a necessary condition for $L$ to give rise to identically satisfied Euler-Lagrange equations is that it is of the form

$$
\begin{equation*}
L(q, \dot{q} ; t)=L^{0}(q ; t)+L^{1}(q ; t) \dot{q} . \tag{9}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\frac{d}{d t} L^{1}=\frac{\partial L^{1}}{\partial t}+\frac{\partial L^{1}}{\partial q} \dot{q} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial q}=\frac{\partial L^{0}}{\partial q}+\frac{\partial L^{1}}{\partial q} \dot{q} \tag{11}
\end{equation*}
$$

Noting that the 2 nd terms of the previous two equations are equal, the EulerLagrange equations thus reduce to the condition

$$
\begin{equation*}
\frac{\partial L^{1}}{\partial t}=\frac{\partial L^{0}}{\partial q} \tag{12}
\end{equation*}
$$

This means that locally there is a function $F(q ; t)$ such that

$$
\begin{equation*}
L^{0}=\partial_{t} F \quad, \quad L^{1}=\partial_{q} F \tag{13}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
L=L^{0}+L^{1} \dot{q}=\partial_{t} F+\partial_{q} F \dot{q}=\frac{d}{d t} F \tag{14}
\end{equation*}
$$

as was to be shown. (Proof in the field theory case is analogous)
2. Complex Scalar Field I: Action and Equations of Motion

The action is

$$
\begin{align*}
S[\Phi] & =\int d^{4} x\left(-\frac{1}{2} \eta^{a b} \partial_{a} \Phi \partial_{b} \Phi^{*}-W\left(\Phi, \Phi^{*}\right)\right)  \tag{15}\\
& =\int d^{4} x\left(-\frac{1}{2} \eta^{a b} \partial_{a} \phi_{1} \partial_{b} \phi_{1}-\frac{1}{2} \eta^{a b} \partial_{a} \phi_{2} \partial_{b} \phi_{2}-V\left(\phi_{1}, \phi_{2}\right)\right)
\end{align*}
$$

(a) Varying $\phi_{1}$ in the 2nd line, while keeping $\phi_{2}$ fixed, one finds

$$
\begin{equation*}
\delta S=\int d^{4} x\left(-\eta^{a b} \partial_{a} \phi_{1} \partial_{b} \delta \phi_{1}-\left(\partial V / \partial \phi_{1}\right) \delta \phi_{1}\right) . \tag{16}
\end{equation*}
$$

Integrating by parts the first term, and dropping the boundary term, one finds the Euler-Lagrange equation $\square \phi_{1}=\partial V / \partial \phi_{1}$. Analogous for $\phi_{2}$.
(b) Using

$$
\begin{align*}
& \partial V / \partial \phi_{1}=(\partial W / \partial \Phi)\left(\partial \Phi / \partial \phi_{1}\right)+\left(\partial W / \partial \Phi^{*}\right)\left(\partial \Phi^{*} / \partial \phi_{1}\right)=(\partial W / \partial \Phi)+\left(\partial W / \partial \Phi^{*}\right) \\
& \partial V / \partial \phi_{2}=(\partial W / \partial \Phi)\left(\partial \Phi / \partial \phi_{2}\right)+\left(\partial W / \partial \Phi^{*}\right)\left(\partial \Phi^{*} / \partial \phi_{2}\right)=i(\partial W / \partial \Phi)-i\left(\partial W / \partial \Phi^{*}\right) \tag{17}
\end{align*}
$$

one finds

$$
\left.\begin{array}{rl}
\square \Phi & =\square \phi_{1}+i \square \phi_{2} \tag{18}
\end{array}=\partial V / \partial \phi_{1}+i \partial V / \partial \phi_{2}=2 \partial W / \partial \Phi^{*}\right)
$$

(c) Varying only $\Phi^{*}$ in the first line of the action, while keeping $\Phi$ fixed, one finds

$$
\begin{equation*}
\delta S=\int d^{4} x\left(-\frac{1}{2} \eta^{a b} \partial_{a} \Phi \partial_{b} \delta \Phi^{*}-\left(\partial W / \partial \Phi^{*}\right) \delta \Phi^{*}\right) \tag{19}
\end{equation*}
$$

Integrating by parts the 1 st term, one obtains $(1 / 2) \square \Phi$, and thus the correct Euler-Lagrange equation for $\Phi$ (analogously for $\Phi \leftrightarrow \Phi^{*}$ ).

