Solutions to Assignments 01

1. The Lorentz Group

(a) The first claim follows from multiplicativity of the determinant (and invariance under transposition):

$$
\begin{equation*}
L^{T} \eta L=\eta \quad \Rightarrow \quad \operatorname{det}\left(L^{T} \eta L\right)=\operatorname{det}(\eta) \quad \Rightarrow \quad \operatorname{det}(L)^{2}=+1 \tag{1}
\end{equation*}
$$

The second claim follows fom writing $\left(L^{T} \eta L\right)_{00}=\eta_{00}$ explicitly,

$$
\begin{align*}
& \eta_{a b} L^{a}{ }_{0} L_{0}^{b} \stackrel{!}{=} \eta_{00}=-1 \\
\Rightarrow & \eta_{00} L_{0}^{0} L_{0}^{0}+\eta_{i k} L_{0}^{i} L_{0}^{k}=-\left(L_{0}^{0}\right)^{2}+\delta_{i k} L_{0}^{i} L_{0}^{k}=-1 \tag{2}\\
\Rightarrow & \left(L_{0}^{0}\right)^{2}=1+\delta_{i k} L_{0}^{i} L_{0}^{k} \geq 1 .
\end{align*}
$$

(b) It is trivial to verify that

$$
\begin{equation*}
L_{1}^{T} \eta L_{1}=\eta \quad, \quad L_{2}^{T} \eta L_{2}=\eta \quad \Rightarrow \quad\left(L_{1} L_{2}\right)^{T} \eta\left(L_{1} L_{2}\right)=\eta \tag{3}
\end{equation*}
$$

Existence of an inverse L^{-1} follows from $\operatorname{det} L \neq 0$ (shown above). That $L \in \mathcal{L} \Rightarrow L^{-1} \in \mathcal{L}$ follows from

$$
\begin{equation*}
L^{T} \eta L=\eta \quad \Leftrightarrow \quad \eta=\left(L^{-1}\right)^{T} \eta L^{-1} \tag{4}
\end{equation*}
$$

Thus Lorentz transformations indeed form a group.
(c) - Matrix Calculation

One can use the good old matrix formalism. For an infinitesimal Lorentz transformation, with $L=\mathbb{1}+\omega$, the defining condition $L^{T} \eta L=\eta$ reduces to

$$
\begin{align*}
(\mathbb{1}+\omega)^{T} \eta(\mathbb{1}+\omega)=\eta & \Rightarrow \eta+\omega^{T} \eta+\eta \omega=\eta \\
& \Rightarrow \quad(\eta \omega)^{T}+(\eta \omega)=0 \tag{5}
\end{align*}
$$

In components, $\eta \omega$ is the matrix

$$
\begin{equation*}
(\eta \omega)_{a b}=\eta_{a c} \omega^{c}{ }_{b} \equiv \omega_{a b} \tag{6}
\end{equation*}
$$

and thus anti-symmetry of $\eta \omega$ means $\omega_{b a}=-\omega_{a b}$.

- Calculation in Components

For the following it will be much more useful to learn how to do such calculations directly in components. With $L_{b}^{a}=\delta_{b}^{a}+\omega_{b}^{a}$, one has (writing
out everything in detail, please make sure that you understand all the steps)

$$
\begin{align*}
\eta_{a b} L_{c}^{a} L^{b}{ }_{d} & =\eta_{a b}\left(\delta_{c}^{a}+\omega_{c}^{a}\right)\left(\delta_{d}^{b}+\omega_{d}^{b}\right) \\
& =\eta_{a b} \delta_{c}^{a} \delta^{b}{ }_{d}+\eta_{a b} \delta^{a} \omega^{b}{ }_{d}+\eta_{a b} \omega_{c}^{a} \delta_{d}^{b} \\
& =\eta_{c d}+\eta_{c b} \omega_{d}^{b}+\eta_{a d} \omega_{c}^{a}=\eta_{c d}+\eta_{c b} \omega_{d}^{b}+\eta_{d a} \omega_{c}^{a} \tag{7}\\
& =\eta_{c d}+(\eta \omega)_{c d}+(\eta \omega)_{d c} \stackrel{!}{=} \eta_{c d}
\end{align*}
$$

which implies the anti-symmetry of $\eta \omega$,

$$
\begin{equation*}
(\eta \omega)_{c d}=-(\eta \omega)_{d c} \tag{8}
\end{equation*}
$$

Example: in $(1+1)$ dimensions, a boost with rapidity α has the matrix form

$$
L(\alpha)=\left(\begin{array}{cc}
\cosh \alpha & -\sinh \alpha \tag{9}\\
-\sinh \alpha & \cosh \alpha
\end{array}\right)
$$

For small (infinitesimal) rapidities $\alpha, L(\alpha)$ reduces to

$$
L(\alpha) \approx\left(\begin{array}{ll}
1 & 0 \tag{10}\\
0 & 1
\end{array}\right)+\alpha\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \equiv \mathbb{1}+\omega .
$$

Note that the second term is not (yet) anti-symmetric, but in accordance with the general result derived above, its product with η is,

$$
\eta \omega=\alpha\left(\begin{array}{cc}
-1 & 0 \tag{11}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & +\alpha \\
-\alpha & 0
\end{array}\right) .
$$

