KFT Solutions 03

1. Particle with constant acceleration

We consider the ($1+1$)-dimensional worldline

$$
\begin{equation*}
x^{a}(\lambda)=\left(g^{-1} \sinh g \lambda, g^{-1} \cosh g \lambda\right) \tag{1}
\end{equation*}
$$

(a) One has $\left(x^{1}\right)^{2}-\left(x^{0}\right)^{2}=g^{-2}$. This is a hyperbola. Moreover, manifestly along this worldline $x^{1}>\left|x^{0}\right|$, so this is a hyperbola in the right-hand quadrant of Minkowski space. By inspection / drawing a picture, one sees that this curve is timelike.
(b) The tangent vector to the curve has components

$$
\begin{equation*}
\frac{d x^{a}}{d \lambda}=(\cosh g \lambda, \sinh g \lambda) \tag{2}
\end{equation*}
$$

Therefore its Minkowski norm is

$$
\begin{equation*}
\eta_{a b} \frac{d x^{a}}{d \lambda} \frac{d x^{b}}{d \lambda}=-\cosh ^{2} g \lambda+\sinh ^{2} g \lambda=-1<0 . \tag{3}
\end{equation*}
$$

This confirms that the worldline is indeed timelike everywhere.
(c) By definition, a worldline parametrised by proper time τ, with corresponding 4 -velocity u^{a}, satisfies (in units where $c=1$)

$$
\begin{equation*}
\eta_{a b} u^{a} u^{b} \equiv u^{a} u_{a}=-1 . \tag{4}
\end{equation*}
$$

On the other hand, as we saw above, the velocity with respect to λ also satisfies this relation everywhere along the worldline. It follows that $\lambda=\tau$ up to an additive constant.
(d) Setting $\lambda=\tau$, the 4 -velocity has components

$$
\begin{equation*}
u^{a}=(\cosh g \tau, \sinh g \tau) \tag{5}
\end{equation*}
$$

and the 4 -acceleration has components

$$
\begin{equation*}
a^{a}=(g \sinh g \tau, g \cosh g \tau) . \tag{6}
\end{equation*}
$$

(e) The Minkowski-norm of the acceleration is

$$
\begin{equation*}
a^{a} a_{a}=\eta_{a b} a^{a} a^{b}=g^{2}\left(\cosh ^{2} g \tau-\sinh ^{2} g \tau\right)=g^{2} \tag{7}
\end{equation*}
$$

which is constant. Thus this worldine describes a particle with constant acceleration g.
(f) For $c \neq 1$, we have $u^{a} u_{a}=-c^{2}$. Moreover, the arguments of the hyperbolic functions need to be dimensionless (it makes no sense to take a non-linear function of a dimensionful variable!). If g has the dimension of an acceleration, and the proper time τ has the dimension of time, then $g \tau$ has the dimension of a velocity. Thus $g \tau / c$ is dimensionless. This determines that

$$
\begin{array}{ll}
x^{a}(\tau)=\left(c^{2} / g\right)(\sinh g \tau / c, \cosh g \tau / c) \\
u^{a}(\tau)=c(\cosh g \tau / c, \sinh g \tau / c) & \left(\Rightarrow u^{a} u_{a}=-c^{2}\right) \tag{8}\\
a^{a}(\tau)=g(\sinh g \tau / c, \cosh g \tau / c) & \left(\Rightarrow a^{a} a_{a}=+g^{2}\right)
\end{array}
$$

(g) We first determine the coordinate velocity $v=d x / d t$ as a function of τ,

$$
\begin{equation*}
v(\tau)=\frac{d x}{d t}(\tau)=\frac{\dot{x}(\tau)}{\dot{t}(\tau)}=\frac{c \sinh g \tau / c}{\cosh g \tau / c}=c \tanh g \tau / c . \tag{9}
\end{equation*}
$$

To write this as a function of t we note that

$$
\begin{equation*}
\sinh g \tau / c=g t / c \quad \Rightarrow \quad \cosh g \tau / c=\left(1+g^{2} t^{2} / c^{2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
v(t)=c \frac{g t / c}{\left(1+g^{2} t^{2} / c^{2}\right)^{1 / 2}}=\frac{g t}{\left(1+g^{2} t^{2} / c^{2}\right)^{1 / 2}} . \tag{11}
\end{equation*}
$$

(h) For a Newtonian particle with acceleration g one would have had $v_{N}(t)=g t$. Thus the difference between the Newtonian and special relativistic results is encoded in the factor $\left(1+g^{2} t^{2} / c^{2}\right)^{-1 / 2}$. In particular,

- the Newtonian particle would have reached the speed of light at the time $t_{c}=c / g$, i.e. $v_{N}\left(t_{c}\right)=c$, at which the special-relativistic particle has the speed

$$
\begin{equation*}
v\left(t_{c}\right)=c / \sqrt{2}, \tag{12}
\end{equation*}
$$

- and for $t \rightarrow \infty$ one has $v(t) \rightarrow c$.

