
KFT Solutions 04

1. Action for a free particle

The action is

S[x] = −mc2
∫
dτ = −mc2

∫
dλ(dτ/dλ) ≡

∫
dλ Lλ (1)

with Lλ = −mc2(dτ/dλ) = −mc(−ηabx′ax′b)1/2.

(a) In order to determine the momentum

pa =
∂Lλ
∂x′a

(2)

conjugate to xa(λ), and to avoid index confusions, let us write the Lagrangian

(without using the index a) as

Lλ = −mc(−ηcbx′cx′b)1/2 . (3)

Using the fact that
∂x′c

∂x′a
= δca (4)

and that ηcb is symmetric, one has

∂

∂x′a

(
ηcbx

′cx′b
)

= 2ηabx
′b . (5)

Therefore

pa =
∂Lλ
∂x′a

= −mc 1
2

(
−ηabx′ax′b

)−1/2 (
−2ηabx

′b
)

= mc ηab

(
cdτ

dλ

)−1 dxb
dλ

= mηab
dxb

dτ
= mua

(6)

or pa = mua. In an inertial system with cordinates (x0 = ct, xk), and with

vk = dxk/dt one has

p0 = mγ(v)c = E/c , pk = mγ(v)vk . (7)

(b) See the KFT Lecture Notes, section 4.4 for the detailed argument.

(c) The Euler-Lagrange equation is

d

dλ

∂Lλ
∂x′a

− ∂Lλ
∂xa

=
d

dλ

∂Lλ
∂x′a

= 0 (8)

and

d

dλ

∂Lλ
∂x′a

=
dτ

dλ

d

dτ
mua =

(
mηab

dτ

dλ

)
d2xb

dτ2
= 0 ⇔ d2xb

dτ2
= 0 . (9)
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(d) The Lagrangian is

Lt = −mc2dτ
dt

= −mc2
√

1− ~v2/c2 = −mc2γ(v)−1 . (10)

Thus the canonical momenta are

p
(c)
k =

∂Lt
∂vk

= (−mc2)γ(v)(−vk/c2) = mγ(v)vk = pk . (11)

Note: Here vk = δklv
l, which arises from

v2 = δklv
kvl ≡ vkvk ⇒ ∂

∂vk
v2 = 2vk . (12)

If one wants to be notationally correct, then one should write things in this

way. However, for spatial Euclidean indices it is not always strictly neces-

sary to distinguish between covariant and contravariant components, since

numerically they are equal, vk = vk, and pk = pk.

The canonical Hamiltonian is

H = p
(c)
k vk − Lt = mγ(v)~v2 +mc2γ(v)−1

= mγ(v)(~v2 + c2(1− ~v2/c2)) = mγ(v)c2 = E = cp0 .
(13)

Remark:

The above derivation of the relativistic spatial momenta pk from the Lagrangian

Lt can be reverse-engineered to provide a poor man’s “derivation” of the action

S = −mc2
∫
dτ from the knowledge of the relativistic momenta pk = mγ(v)vk.

Namely, assume that you are in the inertial system with coordinates (t, xk) and

that you are looking for a standard type Lagrangian

L = L(xk, vk; t) (14)

where vk = dxk/dt are the ordinary Newtonian coordinate velocities, and where

initially we allow a possible explicit dependence of the Lagrangian L on time t.

Then the condition that the canonical momenta conjugate to the ordinary veloci-

ties vk are the relativistic momenta pk implies

∂L

∂vk
!

= pk = mγ(v)vk ⇒ L = −mc2γ(v)−1 + f(xk, t) , (15)

where f(xk, t) is some undetermined function of the coordinates xk and t. Now

translation invariance in xk and t implies that f is just some undetermined con-

stant (which we will set to zero). Then

f(xk, t) = 0 ⇒ L = Lt = −mc2γ(v)−1 , (16)

and therefore

S =

∫
Ltdt = −mc2

∫
dtγ(v)−1 = −mc2

∫
dτ . (17)
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2. Noether-Theorem I: General

(a) Using δx′a(λ) = (d/dλ)δxa, one has

δL =
∂L

∂xa
δxa +

∂L

∂x′a
δx′a =

∂L

∂xa
δxa +

∂L

∂x′a
d

dλ
δxa

=

(
∂L

∂xa
− d

dλ

∂L

∂x′a

)
δxa +

d

dλ

(
∂L

∂x′a
δxa
)
≡ Eaδxa +

d

dλ
(paδx

a) .
(18)

(b) The above identity (the VME) implies that

δsL = 0 ⇒ d

dλ
(paδsx

a) = 0 (19)

for any xa satisfying the Euler-Lagrange equations Ea = 0.

3. Noether-Theorem II: Free Relativistic Particle

(a) Since Lλ = −mc(−ηabx′ax′b)1/2 does not depend on xa(λ), and by the result

of Exercise 03.2a, for any variation δxa one has

δLλ = paδx
′a (20)

with pa = mua the 4-momentum, related to x′a by

x′a = (1/m)(dτ/δλ)pa ≡ µpa . (21)

For an infinitesimal Poincaré transformation one has

δsx
a = εa + ωabx

b ⇒ δsx
′a = ωabx

′b = µωabp
b . (22)

Thus

δsLλ = µpaω
a
bp
b = µωabp

apb = 0 (23)

because papb = pbpa is symmetric, and ωab = −ωba is anti-symmetric.

(b) For translations one has

δsx
a = εa ⇒ paδsx

a = εapa (24)

Because εa is an arbitrary constant vector, the conserved quantity is the

momentum pa (which unifies spatial momentum and energy). For Lorentz

transformations one has

δsx
a = ωabx

b ⇒ paδsx
a = paω

a
bx
b = ωabp

axb = 1
2ωab(p

axb−pbxa) . (25)

Because ωab is an arbitrary anti-symmetric constant matrix, the conserved

quantity is the anti-symmetric combination

Lab = paxb − pbxa (26)

(which unifies angular momentum Lik and the conserved quantity L0k asso-

ciated to Lorentzian boosts).
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