KFT SoLutions 04

1. ACTION FOR A FREE PARTICLE

The action is
Sla] = —ch/dT = —mc2/d>\(d7/d)\) = /dA Ly (1)
with Ly = —mc2(d7—/d)\) — —mC(—nabx'ax/b)1/2.

(a) In order to determine the momentum

oLy
DPa = or'a (2)

conjugate to (), and to avoid index confusions, let us write the Lagrangian

(without using the index ) as

Ly = —me(—nez’*z")/? . (3)
Using the fact that
ox'c .
= )

and that 7. is symmetric, one has

0
w <n0b$/cxlb> — 27]abx/b . (5)

Therefore

oL —1/2
Pa= =—mc (—nabx’“m’b> (—277abx’b>

cdr\ ! da? da? (6)
D e = M

or p* = mu®. In an inertial system with cordinates (z° = ct,z¥), and with
v* = da* /dt one has

P’ =my(v)e=E/c pk = m'y(v)vk . (7)

(b) See the KFT Lecture Notes, section 4.4 for the detailed argument.

(¢) The Euler-Lagrange equation is

d 0Ly 0Ly d 0Ly

IV P e (®)
and
d 0Ly dr d dr\ d?zb d2xb
A0y _drd (o, T T o (9
d\oz®  drdr " (m” bd)\) dr? < )



(d) The Lagrangian is

d
L= —mczd—T = —mc*/1 —2/c2 = —mc*y(v) . (10)

Thus the canonical momenta are

n = ZULIE = (=mc®)y(v)(~ve/c?) = my(v)vr = pi - (11)

Note: Here v, = 00!, which arises from

0
2 _ k1l _ k 2 _
v° = 0 vV = v = —&}kv = 2u . (12)

If one wants to be notationally correct, then one should write things in this
way. However, for spatial Euclidean indices it is not always strictly neces-
sary to distinguish between covariant and contravariant components, since
numerically they are equal, v, = v*, and p;, = p*.
The canonical Hamiltonian is

(c)

H =p, P — Ly = my(v)? + mc?

v(w)™!

= my(v)(T* + (1 = 7%/c?)) = my(v)e?

:E:Cp

Remark:

The above derivation of the relativistic spatial momenta pj from the Lagrangian
L; can be reverse-engineered to provide a poor man’s “derivation” of the action

S = —mc? [ dr from the knowledge of the relativistic momenta p* = m~y(v)v*.
Namely, assume that you are in the inertial system with coordinates (t,z*) and
that you are looking for a standard type Lagrangian

L = L(zF,v*: 1) (14)

where v* = dz¥/dt are the ordinary Newtonian coordinate velocities, and where
initially we allow a possible explicit dependence of the Lagrangian L on time t.

Then the condition that the canonical momenta conjugate to the ordinary veloci-

ties v* are the relativistic momenta pj, implies
oL 2 —1 k
Sok — PE = my(v = L=-mc*yw) " + f(z"t) (15)

where f(z¥ t) is some undetermined function of the coordinates z* and t. Now
translation invariance in z* and ¢ implies that f is just some undetermined con-

stant (which we will set to zero). Then
f@Ft)=0 = L=L=-my)", (16)
and therefore

S = /Ltdt: —ch/dt'y(v)_l = —mc2/dT : (17)
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2. NOETHER-THEOREM I: GENERAL

(a)

(b)

Using d2'%(\) = (d/dX\)dx®, one has

oL ., oL _, OL_, OL d_,
= amaéaz + ax/aém = (%aéw +8x’“ d/\éx

18)
8Ld8Lad6Laiada(
- <3xa_d)\8x’a>5$ +d)\<8:r:’“6x > = &adx +ﬁ(p“5x) ‘

0L

The above identity (the VME) implies that

d
sL: 7asa: 1
) 0o = d)\(pdm) 0 (19)

for any z® satisfying the Euler-Lagrange equations &, = 0.

3. NOETHER-THEOREM II: FREE RELATIVISTIC PARTICLE

(a)

Since Ly = —me(—napz™x™)Y/? does not depend on z%()), and by the result

of Exercise 03.2a, for any variation dz% one has
SLy = paoz’® (20)
with p® = mu® the 4-momentum, related to z'* by
2’ = (1/m)(dr/dN)p" = up® . (21)

For an infinitesimal Poincaré transformation one has

0o = € + Wiz’ = 52’ = Wi = pwip’ . (22)
Thus
8sLx = ppawyp’ = pwapp®p® =0 (23)
because p®p® = pPp? is symmetric, and wqp = —wp, IS anti-symmetric.
For translations one has
052 =€ = pudsx® = €p, (24)

Because € is an arbitrary constant vector, the conserved quantity is the
momentum p, (which unifies spatial momentum and energy). For Lorentz

transformations one has

Osx% = wabxb = pudsz® = pawabl‘b = wabparrb = %Wab(pal'b_pbl‘a) . (25)

Because wgp is an arbitrary anti-symmetric constant matrix, the conserved

quantity is the anti-symmetric combination
ﬁab _ pa.%'b o pbxa (26)

(which unifies angular momentum £* and the conserved quantity £ asso-

ciated to Lorentzian boosts).



