KFT Solutions 05

1. Inhomogeneous Maxwell-Equations and Potentials

(a) With $A_{a}=(-\phi / c, \vec{A})$, the transformation $A_{a} \rightarrow A_{a}+\partial_{a} \Psi$ translates into

$$
\begin{equation*}
A_{0}=-\phi / c \rightarrow-\phi / c+\partial_{0} \Psi=-\phi / c+\partial_{t} \Psi / c \quad \Leftrightarrow \quad \phi \rightarrow \phi-\partial_{t} \Psi \tag{1}
\end{equation*}
$$

and $A_{i} \rightarrow A_{i}+\partial_{i} \Psi \Leftrightarrow \vec{A} \rightarrow \vec{A}+\vec{\nabla} \Psi$.
(b) Under the gauge transformation $A_{b} \rightarrow A_{b}+\partial_{b} \Psi, F_{a b}$ transforms as

$$
\begin{equation*}
\partial_{a} A_{b}-\partial_{b} A_{a} \rightarrow \partial_{a} A_{b}+\partial_{a} \partial_{b} \Psi-\partial_{b} A_{a}-\partial_{b} \partial_{a} \Psi=\partial_{a} A_{b}-\partial_{b} A_{a} \tag{2}
\end{equation*}
$$

and therefore $F_{a b}$ is gauge-invariant.
(c) With $A_{a}=(-\phi / c, \vec{A})$ one has

$$
\begin{align*}
& F_{0 k}=-F_{k 0}=\partial_{0} A_{k}-\partial_{k} A_{0}=c^{-1}\left(\partial_{t} A_{k}+\partial_{k} \phi\right)=-E_{k} / c \\
& F_{i k}=\partial_{i} A_{k}-\partial_{k} A_{i}=\epsilon_{i k \ell} B_{\ell} \quad\left(F_{12}=B_{3} \quad \text { etc. }\right) \tag{3}
\end{align*}
$$

and therefore, with $F^{a b}=\eta^{a c} \eta^{b d} F_{c d}$,

$$
\begin{equation*}
F^{0 k}=-F^{k 0}=-F_{0 k}=E_{k} / c \quad, \quad F^{i k}=F_{i k}=\epsilon_{i k \ell} B_{\ell} . \tag{4}
\end{equation*}
$$

(d) Thus, with $J^{a}=\mu_{0}(\rho c, \vec{J})$ one has

$$
\begin{equation*}
\partial_{a} F^{a 0}=\partial_{k} F^{k 0}=-c^{-1} \vec{\nabla} \cdot \vec{E}=-\rho /\left(\epsilon_{0} c\right)=-\mu_{0} c \rho=-J^{0} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\partial_{a} F^{a 1} & =\partial_{0} F^{01}+\partial_{2} F^{21}+\partial_{3} F^{31}=c^{-2} \partial_{t} E_{1}-\partial_{2} B_{3}+\partial_{3} B_{2} \\
& =-\left(\vec{\nabla} \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}\right)_{1}=-J_{1}=-J^{1} \tag{6}
\end{align*}
$$

(and likewise for the 2- and 3 -components).
(e) One has

$$
\begin{equation*}
\partial_{a} F^{a b}=\partial_{a} \partial^{a} A^{b}-\partial_{a} \partial^{b} A^{a}=\square A^{b}-\partial^{b} \partial_{a} A^{a}=-J^{b} \tag{7}
\end{equation*}
$$

and therefore $\square A_{b}-\partial_{b} \partial_{a} A^{a}=-J_{b}$.
(f) From $\partial_{a} F^{a b}=-J^{b}$ one deduces $-\partial_{b} J^{b}=\partial_{b} \partial_{a} F^{a b}=0$ because $F^{a b}=-F^{b a}$ is anti-symmetric while $\partial_{a} \partial_{b}=\partial_{b} \partial_{a}$ is symmetric.

