
KFT Solutions 06

1. The Homogeneneous Maxwell-Equations

(a) For Gab = G[ab] (totally) anti-symmetric, the definition

Habc = ∂aGbc + ∂bGca + ∂cGab (1)

implies that when one exchanges the two indices a, b, one gets

Hbac = ∂bGac + ∂aGcb + ∂cGba = −∂bGca − ∂aGbc − ∂cGab = −Habc (2)

(and likewise for the index pairs a, c and b, c).

(b) One has

∂aFbc = ∂a∂bAc − ∂a∂cAb (3)

etc. Because 2nd partial derivatives commute, the 1st term is symmetric in

a, b, and the 2nd term is symmetric in a, c. Therefore neither of them can

appear in the totally anti-symmetric combination ∂aFbc+∂bFca+∂cFab. Thus

this linear combination is identically zero,

Fab = ∂aAb − ∂bAa ⇒ ∂aFbc + ∂bFca + ∂cFab ≡ 0 (Bianchi Identity) .

(4)

One can of course also verify this explicitly,

∂a∂bAc − ∂a∂cAb + ∂b∂cAa − ∂b∂aAc + ∂c∂aAb − ∂c∂bAa = 0 . (5)

(c) We consider the equations

∂aFbc + ∂bFca + ∂cFab = 0 (6)

with Fab expressed in terms of E⃗, B⃗, i.e. F01 = −E1/c, F12 = B3 etc. Let us

look at the three cases in turn:

i. Two indices equal (a = b, say): ∂aFac + ∂aFca + ∂cFaa = 0 is identically

satisfied because Faa = 0 and Fac + Fca = 0. Alternatively, this follows

directly from the total anti-symmetry of (6).

ii. All 3 indices spatial. Without loss of generality we can take (a, b, c) =

(1, 2, 3) (because any other choice is related to this one by anti-symmetry).

Then we have

∂1F23 + ∂2F31 + ∂3F21 = ∂1B1 + ∂2B2 + ∂3B3 = ∇⃗.B⃗ = 0 (7)

iii. One index time, the others spatial, e.g. (a, b, c) = (0, 1, 2):

∂0F12+∂1F20+∂2F01 = c−1(∂tB3+∂1E2−∂2E1) = c−1(∇⃗×E⃗+∂tB⃗)3 = 0

(8)

(and likewise for the other components).
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2. The dual field strength tensor

The dual field strength tensor is defined by

F̃ ab = 1
2ϵ

abcdFcd , (9)

with ϵabcd totally anti-symmetric, and ϵ0123 = −1.

(a) As a consequence, one has

∂aF̃
ab = 1

2ϵ
abcd∂aFcd = 1

2ϵ
abcd∂[aFcd] (10)

(because of the contraction with ϵabcd only the totally anti-symmetric part of

∂aFcd contributes). Therefore

∂aF̃
ab = 0 ⇔ ∂[aFcd] = 0 ⇔ ∂aFcd + cyclic permutations = 0 .

(11)

(b) Explicitly, the components of the dual field strength tensor are

F̃ 01 = 1
2ϵ

01cdFcd = 1
2(ϵ

0123F23 + ϵ0132F32) = ϵ0123F23 = −F23

F̃ 23 = 1
2ϵ

23cdFcd = ϵ2301F01 = ϵ0123F01 = −F01

(12)

etc. In terms of E⃗ and B⃗ this means

F̃ 01 = −B1 , F̃ 23 = E1/c (13)

etc. The equation ∂aF̃
ab = 0 can then be written as

∂aF̃
a0 = ∂iF̃

i0 = ∇⃗ · B⃗ = 0 (14)

∂aF̃
aj = ∂0F̃

0j + ∂iF̃
ij = −c−1∂tBj − c−1ϵjik∂iEk

= −1

c

(
∂tB⃗ + ∇⃗ × E⃗

)
j
= 0 , (15)

which proves the assertion.

3. Lorentz Invariants

(a) Using ϵijlϵijk = 2δlk, one has

I1 = 1
4FabF

ab = 1
4

(
F0iF

0i + Fi0F
i0 + FijF

ij
)
= 1

2

(
B⃗2 − c−2E⃗2

)
(16)

I2 = 1
4FabF̃

ab = 1
4

(
F0iF̃

0i + Fi0F̃
i0 + FijF̃

ij
)

= 1
4

(
2c−1EiBi + ϵijkBkc

−1ϵijlEl

)
= c−1E⃗ · B⃗ (17)

(b) If E⃗ = 0 in one inertial system, then I1 > 0 and I2 = 0 in all inertial systems,

and thus E⃗.B⃗ = 0 and |E⃗/c| < |B⃗| in all inertial systems.
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(c) When Fab = ∂aAb − ∂bAa one has

∂a

(
ϵabcdAbFcd

)
= ϵabcd(∂aAb)Fcd + ϵabcdAb∂aFcd

= 1
2ϵ

abcd(∂aAb − ∂bAa)Fcd + ϵabcdAb∂[aFcd]

= 1
2ϵ

abcdFabFcd + 0 = FabF̃
ab .

(18)

Therefore

Ca = ϵabcdAbFcd ⇒ ∂aC
a = FabF̃

ab . (19)

While ∂aC
a is gauge invariant, Ca itself is not. When Aa → Aa + ∂aΨ, one

has

Ca → Ca + ϵabcd(∂bΨ)Fcd = Ca + ∂b

(
ΨϵabcdFcd

)
(20)

(where the last step again follows from the Bianchi identity).

(d) Using F̄ab = Λ c
aΛ

d
b Fcd, one wants to compute the transformation of F̄ij

which contains the magnetic field components. To do this we need the matrix

Λ = (LT )−1. Since L is symmetric, and for the inverse transformation one

has α → −α, Λ is the matrix

(
Λ b
a

)
=


coshα sinhα 0 0

sinhα coshα 0 0

0 0 1 0

0 0 0 1

 . (21)

With it one computes:

F̄ij = Λ c
i Λ

d
j Fcd = Λ 0

i Λ
l
jF0l + Λ k

i Λ
0
j Fk0 + Λ k

i Λ
l
jFkl

=
(
Λ 0
i Λ

l
j − Λ l

i Λ
0
j

)
F0l + Λ k

i Λ
l
jFkl (22)

such that

F̄12 = sinhαF02 + coshαF12 = −c−1γβE2 + γB3 (23)

F̄23 = F23 (24)

F̄31 = − sinhαF03 + coshαF31 = c−1γβE3 + γB2 (25)

from which one can read off the transformation of the magnetic field :

B̄1 = B1

B̄2 = γB2 + c−1βγE3

B̄3 = γB3 − c−1βγE2 (26)
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