SOLUTIONS TO ASSIGNMENTS 07

1. It is useful to first recall how this works in the case of classical mechanics (i.e. a
0+1 dimensional “field theory”). Consider a Lagrangian L(q,q;t) that is a total

time-derivative, i.e.
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Therefore one has
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Now we consider the field theory case. We define
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to compute the Euler-Lagrange equations for it. One gets
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Thus (since partial derivatives commute) the Euler-Lagrange equations are satis-
fied identically.

Remark: One can also show the converse: if a Lagrangian L gives rise to Euler-
Lagrange equations that are identically satisfied then (locally) the Lagrangian is
a total derivative. The proof is simple. Assume that L(q, ¢;t) satisfies
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identically. The left-hand side does evidently not depend on the acceleration §.
The right-hand side, on the other hand, will in general depend on ¢ - unless L is
at most linear in ¢. Thus a necessary condition for L to give rise to identically

satisfied Euler-Lagrange equations is that it is of the form

L(g,4;t) = L%(g;t) + L' (g 1)g - (9)



Therefore 1o p orl oLl
L 1 L L
_—— = = — _— 1
dtoq  di ot ol (10)

and 5 010 o
L L L.
P (1)
¢  9q  Oq
Noting that the 2nd terms of the previous two equations are equal, the Euler-
Lagrange equations thus reduce to the condition
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This means that locally there is a function F(gq;t) such that
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and therefore

d
—F 14
CF (14)

as was to be shown. (Proof in the field theory case is analogous)
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. Complex Scalar Field I: Action and Equations of Motion
The action is
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(a) Varying ¢; in the 2nd line, while keeping ¢ fixed, one finds
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Integrating by parts the first term, and dropping the boundary term, one
finds the Euler-Lagrange equation O¢; = dV/0¢1. Analogous for ¢s.

(b) Using
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(c) Varying only ®* in the first line of the action, while keeping ® fixed, one finds
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Integrating by parts the 1st term, one obtains (1/2)0®, and thus the correct
Euler-Lagrange equation for ® (analogously for ® <> &*).



