Solutions to Assignments 08

1. Complex Scalar Field II: Phase Invariance and Noether-Theorem
(a) If the potential is a function of $\Phi^{*} \Phi$, both the potential and the derivative terms of the Lagrangian are obviously invariant under

$$
\begin{equation*}
\Phi(x) \rightarrow \mathrm{e}^{i \theta} \Phi(x) \quad, \quad \Phi^{*}(x) \rightarrow \mathrm{e}^{-i \theta} \Phi^{*}(x) \tag{1}
\end{equation*}
$$

for constant θ, since in this case the derivatives transform the same way, i.e.

$$
\begin{equation*}
\partial_{a} \Phi(x) \rightarrow \mathrm{e}^{i \theta} \partial_{a} \Phi(x) \quad, \quad \partial_{a} \Phi^{*}(x) \rightarrow \mathrm{e}^{-i \theta} \partial_{a} \Phi^{*}(x) \tag{2}
\end{equation*}
$$

(b) Infinitesimally, one has

$$
\begin{equation*}
\Delta \Phi=i \theta \Phi \quad, \quad \Delta \Phi^{*}=-i \theta \Phi^{*} \tag{3}
\end{equation*}
$$

and therefore the corresponding Noether current is

$$
\begin{equation*}
J_{\Delta}^{a}=\frac{\partial L}{\partial\left(\partial_{a} \Phi\right)} \Delta \Phi+\frac{\partial L}{\partial\left(\partial_{a} \Phi^{*}\right)} \Delta \Phi^{*}=-(i \theta / 2)\left(\Phi \partial^{a} \Phi^{*}-\Phi^{*} \partial^{a} \Phi\right) \tag{4}
\end{equation*}
$$

where (as usual) $\partial^{a}=\eta^{a b} \partial_{b}$. Calculating its divergence, one finds (ignoring the irrelevant constant prefactor, and using the equations of motion)

$$
\begin{align*}
\partial_{a}\left(\Phi \partial^{a} \Phi^{*}-\Phi^{*} \partial^{a} \Phi\right) & =\partial_{a} \Phi \partial^{a} \Phi^{*}+\Phi \square \Phi^{*}-\partial_{a} \Phi^{*} \partial^{a} \Phi-\Phi^{*} \square \Phi \\
& =\Phi \square \Phi^{*}-\Phi^{*} \square \Phi=2\left(\Phi \partial W / \partial \Phi-\Phi^{*} \partial W / \partial \Phi^{*}\right) \tag{5}
\end{align*}
$$

This is not (and should not be) zero in general, but it is zero precisely when $W=W\left(\Phi^{*} \Phi\right)$. Indeed, in that case one has

$$
\begin{equation*}
\partial W\left(\Phi^{*} \Phi\right) / \partial \Phi=W^{\prime}\left(\Phi^{*} \Phi\right) \Phi^{*} \quad, \quad \partial W\left(\Phi^{*} \Phi\right) / \partial \Phi^{*}=W^{\prime}\left(\Phi^{*} \Phi\right) \Phi \tag{6}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\Phi \partial W / \partial \Phi-\Phi^{*} \partial W / \partial \Phi^{*}=W^{\prime}\left(\Phi^{*} \Phi\right)\left(\Phi \Phi^{*}-\Phi^{*} \Phi\right)=0 . \tag{7}
\end{equation*}
$$

2. Complex Scalar Field III: Gauge Invariance and Minimal Coupling
(a) Under
$\Phi(x) \rightarrow \mathrm{e}^{i \theta(x)} \Phi(x) \quad, \quad \Phi^{*}(x) \rightarrow \mathrm{e}^{-i \theta(x)} \Phi^{*}(x) \quad, \quad A_{a}(x) \rightarrow A_{a}(x)+\partial_{a} \theta(x)$
the partial derivative transforms as

$$
\begin{equation*}
\partial_{a} \Phi \rightarrow \partial_{a}\left(\mathrm{e}^{i \theta} \Phi\right)=\mathrm{e}^{i \theta}\left(\partial_{a} \Phi+i\left(\partial_{a} \theta\right) \Phi\right) \tag{9}
\end{equation*}
$$

Therefore the covariant derivative

$$
\begin{equation*}
D_{a} \Phi=\partial_{a} \Phi-i A_{a} \Phi \quad, \quad D_{a} \Phi^{*}=\partial_{a} \Phi^{*}+i A_{a} \Phi^{*} \tag{10}
\end{equation*}
$$

transforms as

$$
\begin{align*}
D_{a} \Phi & \rightarrow \mathrm{e}^{i \theta}\left(\partial_{a} \Phi+i\left(\partial_{a} \theta\right) \Phi\right)-i \mathrm{e}^{i \theta} A_{a} \Phi-i \mathrm{e}^{i \theta}\left(\partial_{a} \theta\right) \Phi \\
& =\mathrm{e}^{i \theta}\left(\partial_{a} \Phi-i A_{a} \Phi\right)=\mathrm{e}^{i \theta} D_{a} \Phi \tag{11}
\end{align*}
$$

Likewise

$$
\begin{equation*}
D_{a} \Phi^{*} \rightarrow \mathrm{e}^{-i \theta} D_{a} \Phi^{*} \tag{12}
\end{equation*}
$$

(b) It is now obvious that the action

$$
\begin{equation*}
S[\Phi, A]=\int d^{4} x\left(-\frac{1}{2} \eta^{a b} D_{a} \Phi D_{b} \Phi^{*}-W\left(\Phi \Phi^{*}\right)\right) \tag{13}
\end{equation*}
$$

is gauge invariant.
(c) The action is

$$
\begin{equation*}
S=S_{\mathrm{Maxwell}}[A]+S[\Phi, A]=\int d^{4} x\left(-\frac{1}{4} F^{2}\right)+S[\Phi, A] \tag{14}
\end{equation*}
$$

The equations of motion for Φ and Φ^{*} are simply the covariant versions of the equations of motion from Exercise 07.2, namely

$$
\begin{equation*}
D^{a} D_{a} \Phi=2 \partial W / \partial \Phi^{*} \quad, \quad D^{a} D_{a} \Phi^{*}=2 \partial W / \partial \Phi \tag{15}
\end{equation*}
$$

Variation with respect to A leads to

$$
\begin{equation*}
\delta S=\int d^{4} x\left(\partial_{a} F^{a b}+J^{b}\right) \delta A_{b} \tag{16}
\end{equation*}
$$

where J^{b} arises from the variation of the gauge field in the covariant derivatives in $S[\phi, A]$. From the variation of A_{a} in $D_{a} \Phi$ one finds a term

$$
\begin{equation*}
-(1 / 2) \eta^{a b}(-i)\left(\delta A_{a}\right) \Phi D_{b} \Phi^{*}=(i / 2) \Phi D^{b} \Phi^{*} \delta A_{b} . \tag{17}
\end{equation*}
$$

Combining this with the analogous term that one obtains from the variation of A_{a} in $D_{b} \Phi^{*}$, one finds

$$
\begin{equation*}
J^{b}=(i / 2)\left(\Phi D^{b} \Phi^{*}-\Phi^{*} D^{b} \Phi\right) \tag{18}
\end{equation*}
$$

The equations of motion $\partial_{a} F^{a b}+J^{b}=0$ imply (and therefore require) that $\partial_{b} J^{b}=0$. Let us show that this equation is satisfied as a consequence of the equations of motion for Φ.
First of all, we have

$$
\begin{equation*}
\partial_{b}\left(\Phi D^{b} \Phi^{*}\right)=\partial_{b} \Phi D^{b} \Phi^{*}+\Phi \partial_{b} D^{b} \Phi^{*} . \tag{19}
\end{equation*}
$$

Adding and subtracting $+i A_{b} \Phi$, we can write this as

$$
\begin{equation*}
\partial_{b}\left(\Phi D^{b} \Phi^{*}\right)=D_{b} \Phi D^{b} \Phi^{*}+\Phi D_{b} D^{b} \Phi^{*} \tag{20}
\end{equation*}
$$

Since the first term is invariant under the exchange $\Phi \leftrightarrow \Phi^{*}$, one finds

$$
\begin{equation*}
\partial_{b}\left(\Phi D^{b} \Phi^{*}-\Phi^{*} D^{b} \Phi\right)=\Phi D_{b} D^{b} \Phi^{*}-\Phi^{*} D_{b} D^{b} \Phi \tag{21}
\end{equation*}
$$

Note that this is just the covariant version of the divergence of the Noether current in Exercise 1, and the remaining step in the proof that this vanishes for a solution to the equations of motion is now identical to that in Exercise 1.

