Solutions 09

1. Noether Energy-Momentum Tensor

The claim follows from

$$
\begin{align*}
\frac{d}{d x^{a}} \Theta_{b}^{a} & =\frac{d}{d x^{a}}\left(-\frac{\partial L}{\partial\left(\partial_{a} \Phi^{A}\right)} \partial_{b} \Phi^{A}+\delta_{b}^{a} L\right) \\
& =-\left(\frac{d}{d x^{a}} \frac{\partial L}{\partial\left(\partial_{a} \Phi^{A}\right)}\right) \partial_{b} \Phi^{A}-\frac{\partial L}{\partial\left(\partial_{a} \Phi^{A}\right)} \partial_{a} \partial_{b} \Phi^{A}+\frac{d}{d x^{b}} L \tag{1}\\
& =\left(\frac{\partial L}{\partial \Phi^{A}}-\frac{d}{d x^{a}} \frac{\partial L}{\partial\left(\partial_{a} \Phi^{A}\right)}\right) \partial_{b} \Phi^{A}+\frac{\partial}{\partial x^{b}} L
\end{align*}
$$

2. Noether Energy-Momentum Tensor for a Scalar Field

The action is

$$
\begin{align*}
S[\phi] & =\int d^{4} x\left(-\frac{1}{2} \eta^{a b} \partial_{a} \phi \partial_{b} \phi-V(\phi)\right) \equiv \int d^{4} x\left(-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right) \\
\Rightarrow \quad \delta S[\phi] & =\int d^{4} x\left(-\eta^{a b} \partial_{a} \phi \partial_{b} \delta \phi-V^{\prime}(\phi) \delta \phi\right) \tag{2}\\
& =\int d^{4} x\left(\eta^{a b} \partial_{a} \partial_{b} \phi-V^{\prime}(\phi)\right) \delta \phi=\int d^{4} x\left(\square \phi-V^{\prime}(\phi)\right) \delta \phi \\
\Rightarrow \quad \square \phi & =V^{\prime}(\phi)
\end{align*}
$$

The energy-momentum tensor is

$$
\begin{equation*}
\Theta_{a b}=-\frac{\partial L}{\partial\left(\partial^{a} \phi\right)} \partial_{b} \phi+\eta_{a b} L=\partial_{a} \phi \partial_{b} \phi-\eta_{a b}\left(\frac{1}{2}(\partial \phi)^{2}+V(\phi)\right) \tag{3}
\end{equation*}
$$

The claim follows from

$$
\begin{align*}
\partial^{a} \Theta_{a b} & =(\square \phi) \partial_{b} \phi+\partial_{a} \phi \partial^{a} \partial_{b} \phi-\partial_{b}\left(\frac{1}{2}(\partial \phi)^{2}+V(\phi)\right) \\
& =(\square \phi) \partial_{b} \phi+\partial_{a} \phi \partial^{a} \partial_{b} \phi-\partial_{b} \partial^{a} \phi \partial_{a} \phi-V^{\prime}(\phi) \partial_{b} \phi \tag{4}\\
& =\left(\square \phi-V^{\prime}(\phi)\right) \partial_{b} \phi
\end{align*}
$$

3. Maxwell Energy-Momentum Tensor
(a) The canonical (Noether) energy-momentum tensor is

$$
\begin{equation*}
\Theta_{a b}=-\frac{\partial L}{\partial\left(\partial^{a} A_{c}\right)} \partial_{b} A_{c}+\eta_{a b} L=F_{a}^{c} \partial_{b} A_{c}-\frac{1}{4} \eta_{a b} F_{c d} F^{c d} \tag{5}
\end{equation*}
$$

the lack of gauge invariance arising from the translational variation $\delta_{T} A_{a}=$ $-\epsilon^{b} \partial_{b} A_{c}$. This situation can be improved by first of all manipulating $\Theta_{a b}$ as

$$
\begin{equation*}
\Theta_{a b}=F_{a}^{c} F_{b c}-\frac{1}{4} \eta_{a b} F_{c d} F^{c d}+F_{a c} \partial^{c} A_{b} \equiv T_{a b}+F_{a c} \partial^{c} A_{b} \tag{6}
\end{equation*}
$$

Here the first two terms are already nice and gauge invariant. The last term can be written as a sum of two terms,

$$
\begin{equation*}
F_{a c} \partial^{c} A_{b}=\partial^{c}\left(F_{a c} A_{b}\right)-\left(\partial^{c} F_{a c}\right) A_{b} \tag{7}
\end{equation*}
$$

The first of these is identically conserved because of $F_{a c}=-F_{c a}$.

$$
\begin{equation*}
\partial^{a} \partial^{c}\left(F_{a c} A_{b}\right)=0 \quad \text { identically } . \tag{8}
\end{equation*}
$$

The second term in (7) is identically zero on solutions, $\left(\partial^{c} F_{a c}\right) A_{b}=0$. Removing both these terms, one can define a new (and vastly improved) energymomentum tensor $T_{a b}$ by

$$
\begin{equation*}
T_{a b}=F_{a c} F_{b}^{c}-\frac{1}{4} \eta_{a b} F_{c d} F^{c d} \tag{9}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\Delta_{T} A_{c}=\delta_{T} A_{c}+\partial_{c}\left(\epsilon^{b} A_{b}\right)=-\epsilon^{b} F_{b c} \tag{10}
\end{equation*}
$$

is a variation, and therefore

$$
\begin{equation*}
\Delta_{T} F_{c d}=\partial_{c} \Delta_{T} A_{d}-\partial_{d} \Delta_{T} A_{c}=-\epsilon^{b}\left(\partial_{c} F_{b d}-\partial_{d} F_{b c}\right) . \tag{11}
\end{equation*}
$$

The Bianchi identity implies

$$
\begin{equation*}
\partial_{c} F_{b d}-\partial_{d} F_{b c}=-\partial_{c} F_{d b}-\partial_{d} F_{b c}=+\partial_{b} F_{c d} \tag{12}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\Delta_{T} F_{c d}=-\epsilon^{b} \partial_{b} F_{c d}=\delta_{T} F_{c d} \tag{13}
\end{equation*}
$$

(c) One has

$$
\begin{equation*}
\Delta_{T} L=\delta_{T} L=\frac{d}{d x^{a}}\left(-\epsilon^{a} L\right) . \tag{14}
\end{equation*}
$$

Therefore the conserved currents are

$$
\begin{equation*}
J_{\Delta_{T}}^{a}=\frac{\partial L}{\partial\left(\partial_{a} A_{c}\right)} \Delta_{T} A_{c}+\epsilon^{a} L=\epsilon^{b}\left(F^{a c} F_{b c}-\frac{1}{4} \delta_{b}^{a} F_{c d} F^{c d}\right)=T_{b}^{a} \epsilon^{b} . \tag{15}
\end{equation*}
$$

(d) $T_{a b}$ is symmetric:

$$
\begin{equation*}
F_{b c} F_{a}^{c}=F_{a}^{c} F_{b c}=F_{a c} F_{b}^{c} \tag{16}
\end{equation*}
$$

($M M^{t}$ is symmetric for any matrix $M \ldots$). Therefore $T_{a b}=T_{b a}$.
$T_{a b}$ is traceless:
In D spacetime dimensions one has (the expression for $T_{a b}$ is valid for any D)

$$
\begin{equation*}
T_{a}^{a}=\eta^{a b} T_{a b}=\eta^{a b} F_{a c} F_{b}^{c}-\frac{1}{4} \eta^{a b} \eta_{a b} F_{c d} F^{c d}=F_{a c} F^{a c}-\frac{D}{4} F_{c d} F^{c d} \tag{17}
\end{equation*}
$$

so this is zero precisely for $D=4$.
(e) From (9) we find

$$
\begin{equation*}
\partial^{a} T_{a b}=\left(\partial^{a} F_{a c}\right) F_{b}^{c}+F_{a c} \partial^{a} F_{b}^{c}-\frac{1}{2}\left(\partial_{b} F_{c d}\right) F^{c d} . \tag{18}
\end{equation*}
$$

The Maxwell equations imply that the first term on the right-hand side is zero. In order to be able to combine the remaining terms, we relabel and raise/lower the indices such that

$$
\begin{equation*}
F_{a c} \partial^{a} F_{b}^{c}-\frac{1}{2}\left(\partial_{b} F_{c d}\right) F^{c d}=F^{a c} \partial_{a} F_{b c}-\frac{1}{2}\left(\partial_{b} F_{a c}\right) F^{a c}=F^{a c}\left(\partial_{a} F_{b c}-\frac{1}{2} \partial_{b} F_{a c}\right) . \tag{19}
\end{equation*}
$$

Since $F^{a c}=-F^{c a}$, only the anti-symmetric part of $\partial_{a} F_{b c}$ contributes, and therefore we anti-symmetrise explicitly, to find

$$
\begin{equation*}
F^{a c}\left(\partial_{a} F_{b c}-\frac{1}{2} \partial_{b} F_{a c}\right)=\frac{1}{2} F^{a c}\left(\partial_{a} F_{b c}-\partial_{c} F_{b a}-\partial_{b} F_{a c}\right) \tag{20}
\end{equation*}
$$

Finally, by the homogeneous Maxwell equations, the term in brackets is zero,

$$
\begin{equation*}
\partial_{a} F_{b c}-\partial_{c} F_{b a}-\partial_{b} F_{a c}=\partial_{a} F_{b c}+\partial_{c} F_{a b}+\partial_{b} F_{c a}=0 . \tag{21}
\end{equation*}
$$

