SoLuUTIONS 09

1. Noether Energy-Momentum Tensor

The claim follows from
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2. Noether Energy-Momentum Tensor for a Scalar Field
The action is
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The energy-momentum tensor is
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The claim follows from
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3. Maxwell Energy-Momentum Tensor

(a) The canonical (Noether) energy-momentum tensor is

oL
Oup = _WabAc + nabL - FacabAC B inabFCdFCd ’ (5)

the lack of gauge invariance arising from the translational variation drA, =

—e?0y A,.. This situation can be improved by first of all manipulating O, as
Oub = F, Fpe — 1napFedF + Fuo0°Ap = Top + Foc0°Ap (6)

Here the first two terms are already nice and gauge invariant. The last term

can be written as a sum of two terms,

Foc0°Ap = 0°(FacAp) — (0°Fue) Ap (7)



The first of these is identically conserved because of Fy. = —F,.
0%0°(FuecAp) = 0 identically . (8)

The second term in (7) is identically zero on solutions, (9°F,.)Ap = 0. Remo-
ving both these terms, one can define a new (and vastly improved) energy-

momentum tensor T, by

Top = FocF)© — napFegF (9)

ApA, = 67A; + 0:( Ay) = = Fye (10)

is a variation, and therefore
ArFoy = 0:ArAg — 0gA1 A = —€°(0.Fyg — 0gFpe) - (11)

The Bianchi identity implies

OcFva — OaFoe = —O0cF gy — Ol = +0pLea (12)
and therefore
ArFog = —0yFoq = 67F,q . (13)
One has
AgL = 671 = dja (—L) . (14)

Therefore the conserved currents are
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Tup is symmetric:

Fy o Ff = FfFye = FuoF© (16)

(MM is symmetric for any matrix M ...). Therefore Ty, = Tp,.
T is traceless:
In D spacetime dimensions one has (the expression for Ty, is valid for any
D)
T4 = T = 1 Py — ey Foa P = FocF — 2 FogFe . (17)

so this is zero precisely for D = 4.



(e) From (9) we find
0Ty = (0°F o) Fy© + Fpe0"F,¢ — $(0yFeg) F . (18)

The Maxwell equations imply that the first term on the right-hand side is
zero. In order to be able to combine the remaining terms, we relabel and

raise/lower the indices such that

Foe0"F)° — Y (0yFog) F = F*0,Fye — 1(0pFoc) F* = F*(0uFye — 30, Fuc)

(19)

Since F'*¢ = —F“® only the anti-symmetric part of d,Fp. contributes, and
therefore we anti-symmetrise explicitly, to find

F(04Fpe — %abFac) = %Fac(aanc — 0cFya — OpFuc) (20)

Finally, by the homogeneous Maxwell equations, the term in brackets is zero,

6anc - acha - abFac - 8zzFbc + 8cFab + 6cha =0 . (21)



