Solutions to Assignments 01b

1. Geometry : Analytic Minkowski-Geometry

Because of Lorentz invariance one can choose to work in the rest frame in which the timelike vector v has the components $v=\left(v^{0}, 0,0,0\right)$, with $v^{0} \neq 0$.
(a) Show that $w \cdot v=0$ implies that w is spacelike, $w^{2}>0$:

In this case one has

$$
\begin{equation*}
v \cdot w=\eta_{a b} v^{a} w^{b}=-v^{0} w^{0}=0 \quad \Rightarrow \quad w^{0}=0 \quad \Rightarrow \quad w=\left(0, w^{1}, w^{2}, w^{3}\right) \tag{1}
\end{equation*}
$$

and thus w is manifestly spacelike,

$$
\begin{equation*}
w^{2}=\eta_{a b} w^{a} w^{b}=\left(w^{1}\right)^{2}+\left(w^{2}\right)^{2}+\left(w^{3}\right)^{2}>0 . \tag{2}
\end{equation*}
$$

(b) Show that any timelike v can be written as a sum of two lightlike vectors:

Decompose v as

$$
\begin{equation*}
v=\left(v^{0}, 0,0,0\right)=\frac{1}{2}\left(v^{0}, v^{0}, 0,0\right)+\frac{1}{2}\left(v^{0},-v^{0}, 0,0\right) \tag{3}
\end{equation*}
$$

Both vectors on the right-hand side are lightlike. Indeed, for any vector $w=\left(w^{0}, w^{1}= \pm w^{0}, 0,0\right)$ one has

$$
\begin{equation*}
\eta_{a b} w^{a} w^{b}=-\left(w^{0}\right)^{2}+\left(w^{1}\right)^{2}=-\left(w^{0}\right)^{2}+\left(w^{0}\right)^{2}=0 \tag{4}
\end{equation*}
$$

(c) Sum of spacelike vectors and sum of timelike vectors

The sum of two spacelike vectors is not necessarily spacelike. As a counterexample, consider the vectors $u=(a, b, 0,0)$ and $v=(a,-b, 0,0)$; these are spacelike for $|b|>|a|$ but their sum $u+v=(2 a, 0,0,0)$ is clearly timelike. This shows that one should not think that for spacelike vectors Minkowski geometry reduces to Euclidean geometry.
The sum of two timelike vectors is not necessarily timelike. As a counterexample, consider the vectors $u=(a, b, 0,0)$ and $v=(-a, b, 0,0)$; these are timelike for $|b|<|a|$ but their sum $u+v=(0,2 b, 0,0)$ is clearly spacelike. What is true is that the sum of two future-pointing ($u^{0}>0, v^{0}>0$) timelike vectors is future-pointing and timelike.

