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Abstract

These notes are based on �ve lectures given at the University of Utrecht in

early 1996. My intention was to introduce the subject of black hole ther-

modynamics starting at the beginning, at a level suitable for anyone with a

passing acquaintance with general relativity and quantum �eld theory. Al-

though the approach is elementary, several aspects of current research are

discussed. The coverage of topics is very uneven. Properties of classical

black holes and both classical and quantum black hole thermodynamics are

treated. The selection and focus is determined by my idiosyncracies, time

limitations, and an e�ort to illuminate some topics that have not tradition-

ally been emphasized. Vast amounts of interesting and important work on

the subject are not mentioned.

I am very grateful to the Institute for Theoretical Physics for the hospi-

tality and support they have provided during a very stimulating sabbatical

year I spent there.
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Chapter 1

Black hole basics

1.1 What is a black hole?

1.1.1 Newtonian viewpoint

In Newtonian physics, the escape velocity from a spherical massM of radius

R satis�es

1

2

v

2

esc

= GM=R, or v

esc

=

q

2GM=R (independent of the mass of

the escaping object, by equivalence of inertial and gravitational masses). v

esc

exceeds the speed of light if R < R

s

:= 2GM=c

2

. The radius R

s

is called the

\Schwarzschild radius" for the mass M . The general relativistic description

will be given below.

1.1.2 Black hole types

� collapsed star: R

s

(M

�

) � 3 km.

� collapsed star cluster: e.g. R

s

(10

9

M

�

) � 20 A.U.

� primordial black hole (hypothetical): e.g. R

s

(10

15

gm)� 10

�13

cm.

(Hawking temperature � 10 MeV; would �nish evaporating today if

born in early universe.)

Since M grows like r

3

at �xed density, one can have a black hole at any

density. For a solar mass the critical density is a little above nuclear density.

In fact, a neutron star of mass 1:4M

�

has a radius of about 10 km and a

Schwarzschild radius of about 4 km, so it is rather close to the Schwarzschild
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limit. A black hole formed from a billion stars in a galactic center can initially

have an average density lower than that of ordinary matter. Of course the

stars will collapse together, and eventually reach much higher (in fact in�nite)

density.

Is an elementary particle a black hole? No! Its Compton wavelength is

much greater than its Schwarzschild radius. (For a proton, �=R

s

� 10

39

.)

At what mass are these two length scales equal? GM=c

2

= �h=Mc when M

is the Planck mass M

P

and R

s

is the Planck length L

P

:

M

P

= (�hc=G)

1=2

� 10

�5

gm

E

P

= (�hc

5

=G)

1=2

� 10

19

GeV

L

P

= (�hG=c

3

)

1=2

� 10

�33

cm

From now on I will use units in which c = 1, unless otherwise noted. Also �h

and G are sometimes set equal to unity.

1.1.3 Black hole metric

The line element for a spherically symmetric vacuum metric is most familiar

in Schwarzschild coordinates,

ds

2

= (1�

r

s

r

)dt

2

� (1�

r

s

r

)

�1

dr

2

� r

2

(d�

2

+ sin

2

�d�

2

): (1.1)

Since the Schwarzschild \time" coordinate t goes to in�nity at the event

horizon, these coordinates are singular there. It is often useful therefore

to to adopt other coordinates which are regular across the horizon. A nice

choice is Eddington-Finkelstein (EF) coordinates, in which the line element

is given by

ds

2

= (1�

r

s

r

)dv

2

� 2dvdr � r

2

(d�

2

+ sin

2

�d�

2

); (1.2)

where r

s

= 2GM=c

2

and M is the mass. If r

s

= 0 this is just at spacetime.

The meaning of r is seen from the last term: 4�r

2

is the area of the spheres

of symmetry. Lines at constant v; �; � are ingoing radial lightrays, and the

outgoing radial lightrays satisfy dr=dv =

1

2

(1�r

s

=r). For r = r

s

this vanishes,

so the \outgoing" light rays remain at constant r, i.e. the outgoing spherical

wavefront has a constant area of 4�r

2

s

. This is the event horizon. It is a
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r=0 M 2M 3M 4M 5M

v= const.

Figure 1.1: Diagram of the positive mass EF spacetime, suppressing the angular

coordinates, with constant r surfaces vertical and constant v surfaces at 45

�

.

regular part of the spacetime. For r < r

s

the \outgoing" light rays are

dragged inward to decreasing r and eventually reach r = 0. At r = 0 the

curvature diverges so there is a true singularity there. The singularity is

causally disconnected from the exterior if r

s

> 0, i.e. if the mass M is

positive. In this case the spacetime is called a black hole. If M < 0 then

there is no event horizon and the singularity is naked. The conjecture that

naked singularities do not occur in nature is called the cosmic censorship

conjecture. It may well be false.

A.S. Eddington, \A Comparison of Whitehead's and Einstein's Formulas",

Nature 113, 192 (1924).

D. Finkelstein, \Past-Future Asymmetry of the Gravitational Field of a

Point Particle", Phys. Rev. 110, 965 (1958).

1.1.4 General references

A few references for general relativity, black holes, and classical and quantum

black hole thermodynamics:

S.W. Hawking and G.F.R. Ellis, \The Large Scale Structure of Spacetime",

(Cambridge University Press, 1973).
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collapsing
shell

Figure 1.2: Picture of a black hole that forms from a collapsing shell of matter.

C.W. Misner, K.S. Thorne, and J.A. Wheeler, \Gravitation", (Freeman,

1973).

R.M. Wald, \General Relativity", (University of Chicago Press, 1984).

B.F. Schutz, \A First Course in General Relativity", (Camb. U. P., 1985).

I.D. Novikov and V.P. Frolov, \Physics of Black Holes", (Kluwer, 1989).

S.W. Hawking and W.Israel, \General Relativity: An Einstein Centenary

Survey", (Cambridge U. Press, 1979).

S.W. Hawking and W.Israel, \Three Hundred Years of Gravitation",

(Cambridge U. Press, 1987).

K.S. Thorne, \Black Holes and Time Warps", (Norton, 1994).

D.W. Sciama, \Black Holes and Their Thermodynamics", Vistas in

Astronomy 19, 385 (1976).

P.C.W. Davies, \Thermodynamics of Black Holes", Rep. Prog. Phys. 41,

1313 (1978)

R.M. Wald, \Quantum, Field Theory in Curved Spacetime and Black Hole

Thermodynamics", (Univ. Chicago Press, 1994). R. Brout, S. Massar, R.

Parentani, and Ph. Spindel, 1995, \A Primer for black hole quantum

physics", Phys. Rep. 260, 329.
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1.2 Black hole uniqueness

There is only a very limited family of stationary, asymptotically at, black

hole solutions to the Einstein equations. Such a spacetime is one that has

an event horizon and a Killing vector that is timelike at in�nity. A static

spacetime is a stationary one that also has a time reection symmetry. Thus

a rotating black hole is stationary but not static, whereas a nonrotating one

is static.

A number of black hole uniqueness theorems have been proved under

various reasonably well motivated assumptions. The EF metric (1.2) gives

the unique static vacuum solution with an event horizon. The only stationary

vacuum solution with a horizon is the Kerr solution, parametrized by the

total massM and angular momentum J . Including an electromagnetic �eld,

the only static solution with a horizon with one connected component is the

Reissner-Nordstrom solution parametrized by mass and electric and magnetic

charges Q

e

; Q

m

. Since the electromagnetic stress-energy tensor is duality

rotation invariant, the metric depends only on the combination Q

2

e

+ Q

2

m

.

Finally, allowing for angular momentum, the unique stationary black hole

solution with electromagnetic �eld is the Kerr-Newman metric.

1.3 Positive energy theorem

Energy of an isolated (asymptotically at) system in GR can be de�ned as

the gravitating mass as measured at in�nity, times c

2

. This energy, which is

the numerical value of the Hamiltonian that generates the time translation

symmetry at in�nity, is a conserved quantity in general relativity. The energy

can be negative e.g. if we simply put r

s

< 0 in the Eddington-Finkelstein

line element, but this yields a naked singularity. If one assumes (i) spacetime

can be spanned by a nonsingular Cauchy surface whose only boundary is

the one at in�nity, and (ii) matter has positive energy (more precisely, the

stress-energy tensor satis�es the dominant energy condition, which for diag-

onalizable T

ab

means that the energy density is greater than the magnitude

of any principal pressure), then it can be proved that the total energy of the

spacetime is necessarily positive. This was �rst proved in a geometrical way

by Schoen and Yau, and shortly thereafter proved in a more direct way way

by Witten. The idea for this proof came from quantum supergravity, where
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the Hamiltonian has the manifestly positive form H = Q

2

in terms of the

supersymmetry generator Q.

Witten's proof goes roughly as follows. The energy is written as a ux

integral involving �rst derivative of the metric at in�nity which picks o�

the coe�cient of the 1=r term in the metric. This is sometimes called the

ADM energy. This is then reexpressed, using the Einstein equations, as a

volume integral over a spacelike Cauchy surface with an integrand containing

a term quadratic in the derivative of an arbitrary spinor �eld and a term

in the energy density of matter. If the spinor �eld is chosen to satisfy a

certain elliptic di�erential equation, then the quadratic spinor term becomes

manifestly positive. The only zero energy solution is empty at spacetime.

If a black hole is present then the Cauchy surface can be chosen to dip

below the formation of the event horizon, thus avoiding the presence of an

inner boundary or singularity on the surface. Alternatively, the contribution

from an inner boundary located at an apparent horizon can be shown to be

positive.

Positivity of the total energy at in�nity does not necessarily mean that

the system cannot radiate an in�nite energy while collapsing, since both the

energy of the radiation and the energy of the leftover system are included

in the total energy. A di�erent de�nition of energy, called the Bondi en-

ergy, allows one to evaluate just the \leftover" energy. The Bondi energy

is the gravitating mass as seen by light rays propagating out to in�nity in

the lightlike direction, rather than the spacelike direction. Essentially the

same argument as before shows that the Bondi energy is also necessarily

nonnegative. Thus only a �nite energy can be radiated away.

A positive energy theorem has also been proved in the presence of a

negative cosmological constant, in which case the asymptotic structure of

the spacetime is anti-de-Sitter rather than at.

References

R. Schoen and S.-T. Yau, \Proof of the Positive Mass Theorem" II., Com-

mun. Math. Phys. 79, 231 (1981).

R. Schoen and S.-T. Yau, \Proof that the Bondi Mass is Positive", Phys.

Rev. Lett. 48, 369 (1982).

E. Witten, \A New Proof of the Positive Energy Theorem", Commun. Math.

Phys. 80, 381 (1981).
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W. Israel and J.M. Nester, \Positivity of the Bondi Gravitational Mass",

Phys. Lett. 85A, 259 (1981).

G.T. Horowitz and M.J. Perry, \Gravitational Energy Cannot Become Neg-

ative", Phys. Rev. Lett. 48, 371 (1982).

G.W. Gibbons, S.W. Hawking, G.T. Horowitz, and M.J. Perry, \Positive

Mass Theorems for Black Holes", Commun. Math. Phys. 88, 295 (1983).

L.F. Abbott and S. Deser, \Stability of Gravity with a Cosmological Con-

stant", Nucl. Phys. B195, 76 (1982).

1.4 Singularity theorem

One might have thought that the singularity at r = 0 is just an artifact of

perfect spherical symmetry, that in an asymmetric collapse most of the mass

would \miss" rather than collide and no in�nite density or curvature would

develop. A strong suggestion that this is not the case comes from the fact

that the angular momentum barrier for orbits of test particles in a black

hole spacetime gives way to a negative 1=r

3

-term of purely relativistic origin

which produces an in�nite well as r goes to zero. That it is in fact not true

was proved by Penrose.

The idea of Penrose's proof rests on the concept of a trapped surface.

This is a closed, spacelike, 2-surface whose ingoing and outgoing null normal

congruences are both converging (see Fig. 1.3). For example, a sphere at

constant r and v in Eddington-Finkelstein coordinates is a trapped surface

if it lies inside the horizon. But even in a somewhat asymmetrical collapse

it is expected that a trapped surface will form.

Penrose argues that the existence of a trapped surface T implies the

existence of a singularity on the boundary @F of its future F . (The \future"

of a set is the collection of all spacetime points that can be reached by future-

going timelike or null curves from that set.) Very roughly his reasoning is

this: the null normals to T start out converging everywhere so, since gravity is

attractive, they must continue converging and will necessarily reach crossing

points (technically, conjugate points) in a �nite a�ne parameter. @F must

\end" before or when the crossing points are reached (because the boundary

@F must be locally tangent to the light cones) so @F must be compact. This

is a very weird structure for the boundary of the future of T , and in fact

is incompatible with other reasonable requirements on the spacetime (see
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trapped surface
Figure 1.3: Boundary of the future of an ordinary untrapped surface (left) and a

trapped surface (right).

below). The only way out is if at least one of the null normals cannot be

extended far enough to reach its crossing point. This nonextendibility is

what is meant in the theorem by the existence of a singularity.

Einstein's equation comes into the proof only in ensuring that the ini-

tially converging null normals to T must reach a crossing point in a �nite

a�ne parameter. It is worth explaining this in more detail, since it involves

technology that �gures in many developments in general relativity and black

hole thermodynamics, namely, the focusing equation (which is often called

the Raychaudhuri equation, or Sach's equation, or Newman-Penrose equa-

tion). This equation relates the focusing of a bundle of light rays (called

a null geodesic congruence) to the Ricci tensor. Consider a null geodesic

congruence that emanates from one side of a spacelike 2-surface. De�ne

the convergence � of the congruence as the fractional rate of change of an

in�nitesimal cross-sectional area �A: � :=

d

d�

ln �A, where � is an a�ne pa-

rameter for the null geodesics. Then one has the equation

d

d�

� =

1

2

�

2

+ �

2

+R

ab

k

a

k

b

; (1.3)

where �

2

is the (positive) square of the shear tensor of the congruence, and

k

a

is the tangent vector to the geodesics.

This focusing equation shows that an initially converging congruence must
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reach a \crossing point", i.e. a point where � diverges, in a �nite a�ne

parameter provided R

ab

k

a

k

b

� 0. More precisely,

d

d�

� �

1

2

�

2

implies that

if �(0) = �

0

> 0, then � ! 1 for some � � 2=�

0

. In at space this

would of course be true, and if positive the Ricci tensor term will only make

it converge faster. The condition R

ab

k

a

k

b

� 0 is equivalent via Einstein's

equation to the condition T

ab

k

a

k

b

� 0, which for a diagonalizable stress-

energy tensor is equivalent to the condition that the energy density plus

any of the three principal pressures is positive. Thus unless there is \anti-

gravitational repulsion" due to negative energy and/or pressure, a crossing

point must be reached.

A somewhat more precise statement of Penrose's theorem is that a sin-

gularity is unavoidable if there is a trapped surface and (i) R

ab

k

a

k

b

� 0

for all null k

a

and (ii) spacetime has the form M = � � R, where � is a

non-compact, connected, Cauchy surface. Later Hawking and Penrose gave

another proof that weakened the second assumption, replacing it by the con-

ditions that (ii

0

) there are no closed timelike curves and (ii

00

) the curvature

is \generic" in a certain extremely mild sense.

References

R. Penrose, \Gravitational Collapse and Space-Time Singularities", Phys.

Rev. Lett. 14, 57 (1965)

S.W. Hawking and R. Penrose, \The Singularities of Gravitational Collapse

and Cosmology", Proc. Roy. Soc. Lond. A314, 529 (1970).

1.5 Energy extraction

A black hole can be used as a \catalyst" to extract the rest energy of a particle

as useful work. Alternatively, energy can be extracted from a black hole itself,

if the hole is spinning or charged, by classical processes. If quantum e�ects

are included, then it turns out that one can even extract energy from a

nonrotating, neutral black hole, either by letting it evaporate via Hawking

radiation or by \mining" it. In this section we consider some of these classical

energy extraction processes.
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1.5.1 Converting mass to energy

The entire rest mass m of a particle can be extracted as useful work by

lowering the mass quasistatically down to the horizon of a black hole and

�nally dropping it in. For the black hole (1.2) this can be understood as

follows. The vector �eld �

�

:= �

�

v

is a Killing vector (symmetry vector) for

the EF metric (1.2), and the associated conserved quantity for a particle of

mass m is E = m _x

�

�

�

, which is conserved along a geodesic. Let us call E the

Killing energy. For a particle at �xed r; �, and �, _x

�

=

^

�

�

:= �

�

=j�j, so we

have E = j�jm. As r ! r

s

, the norm of the Killing �eld j�j = (1 � r

s

=r)

1=2

vanishes (since �

�

becomes null at the horizon), so the particle has zero

Killing energy. To lift it back out to in�nity would take an energy input m.

Conversely, in lowering the particle to the horizon all its mass energy can be

extracted as useful work at in�nity! If the particle is then dropped across the

horizon, the black hole mass is unchanged, since the particle has zero energy.

As an aside, we point out the relation between the Killing energy E and

the energy E

stat

measured by a static observer with four-velocity

^

�

�

at the

location of the particle. The latter energy is E

stat

:= m _x

�

^

��, so E = j�jE

stat

.

For r � r

s

this yields E ' (1�M=r)E

stat

, showing that E is the static energy

plus the \potential energy" �E

stat

M=r. If furthermore the velocity relative

to the static observer is small, then E

stat

' m+

1

2

mv

2

, so E is approximately

equal to the rest mass plus the Newtonian kinetic and potential energies.

1.5.2 Ergoregions

On the horizon of the EF metric the \time-translation" Killing vector (@=@v)

�

becomes null, and inside the horizon it is spacelike (see Fig. 1.1). The

associated conserved quantity is therefore a spatial momentum component,

so can be negative. This is important in the Hawking e�ect.

This peculiar situation can also occur outside an event horizon, for ex-

ample in the spacetime around a rapidly rotating stationary neutron star or

black hole. Such a con�guration is classically unstable for a star, so we focus

on the black hole. A region where a Killing vector that is a time translation

at in�nity becomes spacelike is called an ergoregion. For a rotating black

hole it is sketched in Fig. 1.4.

12



2

1

0

ergo-
region

Figure 1.4: Penrose process to extract rotational energy by exploiting the ergore-

gion of a rotating black hole.

1.5.3 Penrose process

Penrose suggested a classical process by which one could exploit the existence

of the ergoregion to extract the rotational energy of a rotating black hole.

Particle 0 is sent into the ergoregion, where it breaks up into particles 1 and

2, arranged so that particle 2 has negative energy and falls across the horizon

while particle 1 escapes to in�nity with energy greater than the initial energy

of particle 0, so total energy is conserved.

The extracted energy must come at the expense of the rotational energy of

the hole, so particle 2 must presumably have an angular momentum opposite

to that of the hole. The most e�cient energy extraction process would be one

for which the ratio of energy to angular momentum extracted is maximized.

This e�ciency is ultimately limited by the fact the four-velocity vector p

2

=m

2

of particle 2 (like that of all particles) must be a future-pointing time-like or

null vector.

To determine the limiting e�ciency, let � be the time-translation (at

in�nity) Killing �eld, and let  be the axial rotation Killing �eld. The

corresponding conserved quantities for a particle of four-momentum p are the

energy E = p � � and the angular momentum L = �p �  (the sign di�erence

is due to the fact that  is spacelike at in�nity whereas � is timelike). On

the horizon itself both � and  are spacelike, but the horizon is generated by

13



ψ

ξ

ψΩ

χ

Figure 1.5: Portion of an event horizon of a rotating black hole. The time trans-

lation and rotation Killing �elds � and  are both spacelike on the horizon, and

the linear combination � = � +
 is tangent to the null horizon generators. 
 is

the angular velocity of the horizon.

null geodesics, and there must be a linear combination � := �+
 that is a

future pointing null Killing vector generating translations along the horizon

generators (see Fig. 1.5). The constant 
 is called the angular velocity of the

horizon. As particle 2 crosses the horizon, the two future pointing vectors p

2

and � must have a non-negative inner product: 0 � p

2

�� = E

2

�
L

2

. Thus

L

2

� E

2

=
 < 0, so indeed particle 2 must carry angular momentum opposite

to that of the hole. For the most e�cient process one has �M = 
�J , where

�M = E

2

and �J = L

2

are the change in the mass and angular momentum

of the hole.

The maximum e�ciency occurs when p

2

is a null vector tangent to the

horizon generator. This has the interesting implication that, when the par-

ticle enters the black hole, it does not a�ect the area of the event horizon

to �rst order beyond the test particle approximation. One can see this from

the focusing equation (1.3) because R

ab

k

a

k

b

/ T

ab

k

a

k

b

/ k

a

k

b

k

a

k

b

= 0:

Thus, since the shear term �

2

is second order, the convergence of the horizon

generators remains zero, so the cross sectional area of the horizon remains

unchanged. The limiting e�ciency is therefore reached when the horizon

area is unchanged by the process.
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1.5.4 Charged black holes

If a black hole is electrically charged one can extract energy from it by neu-

tralizing it. Consider a charged particle of mass m and charge q. The equa-

tions of motion for this particle follow from the lagrangian L =

1

2

g

��

_x

�

_x

�

+

qA

�

_x

�

. The conjugate momentum is thus p

�

= m _x

�

+ qA

�

. If the metric

and vector potential are both invariant under the translation generated by a

Killing vector �

�

, then the Killing energy E = p

�

�

�

is conserved. Now imag-

ine lowering the charge down to the horizon of the black hole. At in�nity,

the static charge has E(1) = m (assuming A

�

= 0 at in�nity), while at the

horizon it has E(horizon) = q�, where � is the potential di�erence between

the horizon and in�nity. If the particle and the black hole are oppositely

charged, then E(horizon) < 0, so there is something like an ergoregion. Al-

though the Killing �eld is not spacelike, and the four-velocity of the particle

is not spacelike, the four-momentum of the particle is spacelike.

The di�erence E(1)� E(horizon) = m � q� can be extracted as useful

work at in�nity in the lowering process. Dropping the charge into the black

hole will now change the mass and charge of the black hole by the amounts

�M = q� and �Q = q, so the extra energy �q� at in�nity has come at

the expense of some of the black hole's mass and charge. To maximize the

e�ciency of energy extraction one should obviously drop the charge in just

outside the horizon. As in the case of the Penrose process, this will not

change the area of the horizon since the energy-momentum tensor of the

particle is still proportional to _x

a

_x

b

, so R

ab

k

a

k

b

/ _x

a

_x

b

k

a

k

b

= 0. In this case

one has �M = ��Q.
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1.6 Area theorem

In the examples above the most e�cient energy extraction occurs when the

black hole area is unchanged, and in less e�cient processes the area always

increases. It was shown by Hawking that in fact the area of an event horizon

can never decrease under quite general assumptions. Hawking's theorem

applies to arbitrary dynamical black holes, for which a general de�nition of

the horizon is needed. The future event horizon of an asymptotically at

black hole spacetime is de�ned as the boundary of the past of future null

in�nity, that is, the boundary of the set of points that can communicate

with the remote regions of the spacetime to the future. Hawking proved

that if R

ab

k

a

k

b

� 0, and if there are no naked singularities (i.e. if \cosmic

censorship" holds), the cross sectional area of a future event horizon cannot

be decreasing anywhere. The reason is that the focusing equation implies

that if the horizon generators are converging somewhere then they will reach

a crossing point in a �nite a�ne parameter. But such a point cannot lie on

a future event horizon (because the horizon must be locally tangent to the

light cones), nor can the generators leave the horizon. The only remaining

possibility is that the generators cannot be extended far enough to reach the

crossing point|that is, they must reach a singularity.

That was an easy argument, but it isn't as strong as one would like, since

the singularity may not be naked, i.e. visible from in�nity, and we have

no good reason to assume clothed (or barely clothed) singularities do not

occur.

1

With a more subtle argument, Hawking showed that convergence of

the horizon generators does imply existence of a naked singularity. The basic

idea is to deform the horizon cross-section outward a bit from the point where

the generators are assumed to be converging, and to consider the boundary

1

Actually, we do not really have any solid reason to believe that naked singularities do

not occur either, and yet all of black hole thermodynamics seems to rest on this assumption.

Perhaps it is enough for near-equilibrium black hole thermodynamics if naked singularities

are not created in quasi-stationary processes.
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null generators

deformation

horizon 
cross-section

Figure 1.6: Portion of an event horizon with some converging generators that

reach a crossing point. The generators of the boundary of the future of the defor-

mation also reach a crossing point. The impossibility of this crossing point is used

in proving the area theorem.

of the future of the part of the deformed cross-section that lies outside the

horizon. If the deformation is su�ciently small, all of the generators of this

boundary are initially converging and therefore reach crossing points and

leave the boundary at �nite a�ne parameter. But at least one of these

generators must reach in�nity while remaining on the boundary, since the

deformed cross-section is outside the event horizon. The only way out of the

contradiction is if there is a singularity outside the horizon, on the boundary,

which is visible from in�nity and therefore naked.

Essentially the same argument as the one just given also establishes that

an outer trapped surface must not be visible from in�nity, i.e. must lie inside

an event horizon. This fact is used sometimes as an indirect way to probe

numerical solutions of the Einstein equation for the presence of an event

horizon. Whereas the event horizon is a nonlocal construction in time, and

so can not be directly identi�ed given only a �nite time interval, a trapped

surface is de�ned locally and may be unambiguously identi�ed at a single

time. Assuming cosmic censorship, the presence of a trapped surface implies

the existence of a horizon.

17



1.6.1 Applications of the area theorem

The area of the event horizon of a rotating stationary black hole of mass M

and angular momentum J is

A = 8�M(M +

q

M

2

� J

2

=M

2

):

Suppose such a black hole looses energy and all of its angular momen-

tum by some process. The area theorem A

f

� A

i

, with J

f

= 0, implies

16�M

2

f

� 8�M

i

(M

i

+

q

M

2

i

� J

2

i

=M

2

i

). If the initial angular momentum

has its maximum possible value J

i

= M

2

i

, we �nd that M

f

� M

i

=

p

2, so

�M =M

i

�M

f

�M

i

(1� 1=

p

2) ' 0:29M

i

. Thus at most 29% of the initial

mass can be radiated away.

Suppose two nonrotating black holes of mass M

1

and M

2

start far apart

and then come together, radiate gravitational wave energy, and settle down

to a nonrotating black hole with mass M

f

. An upper limit on the energy

radiated is obtained from A � A

1

+ A

2

, or M

2

f

� M

2

1

+M

2

2

. If M

1

= M

2

this yields a limit �M = 2M

1

�M

f

� (1 � 1=

p

2)(2M

1

), so at most 29% of

the initial mass can be radiated. If M

2

� M

1

the limit is �M � M

2

(1 �

O(M

2

=M

1

)), so almost all of the smaller mass M

2

can be extracted.

Finally, if two maximally spinning holes with mass M and angular mo-

mentum J collide and form a single nonspinning hole of mass M

f

, we have

from A

f

� A

i

the limit M

2

f

� M

2

, or �M = 2M �M

f

� M . That is, at

most half the initial mass energy could be radiated.

Testing Cosmic Censorship

Suppose there is an outer trapped surface on an asymptotically at initial

data surface. Then if Cosmic Censorship holds there must be an event hori-

zon enclosing the trapped surface, and the area of this horizon can only

increase to the future. If the total energy of the spacetime is E, then the

maximum area this enveloping horizon can have is 16�E

2

. Thus, on the

initial data surface, Cosmic Censorship requires that there exist a surface

with area 16�E

2

enclosing the trapped surface. This bound is called the

isoperimetric inequality. If initial data violating this bound exists, then Cos-

mic Censorship must be violated! Limited proofs that this bound holds have

been established, but not yet with complete generality.
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Chapter 2

Classical Black Hole

Thermodynamics

From the forgoing it is apparent that energy can ow not just into black holes

but also out of them, and they can act as an intermediary in energy exchange

processes. Energy extraction is maximally e�cient when the horizon area

does not change, and processes that increase the area are irreversible, since

the area cannot decrease. The analogy with thermodynamic behavior is

striking, with the horizon area playing the role of entropy. This analogy

was vigorously pursued as soon as it was recognized at the beginning of the

1970's, although it had what appeared at �rst to be several glaring aws:

F1. the temperature of a black hole vanishes;

F2. entropy is dimensionless, whereas horizon area is a length squared;

F3. the area of every black hole is separately non-decreasing, whereas only

the total entropy is non-decreasing in thermodynamics.

By 1975 it was understood that the resolution to all of these aws lies in the

incorporation of quantum theory, as has so often been the case in resolving

thermodynamic conundrums. A black hole has a Hawking temperature pro-

portional to Planck's constant �h, the entropy is one fourth the horizon area

divided by the Planck length squared (�hG=c

3

), and the area can decrease via

Hawking radiation.

Rather than jumping now immediately into the subject of quantum black

hole thermodynamics, it is worth discussing �rst the classical aspects of the
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theory. These are important in their own right, and they form the foundation

for quantum black hole thermodynamics. But also it is intriguing to see

what can be inferred without invoking quantum theory, and it may teach us

something about the deeper origins of gravitation. In proceeding this way

we are following more or less the path that was taken historically.
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2.1 The four laws of black hole mechanics

By its very de�nition, a classical black hole cannot emit anything, so it seems

at �rst futile to attempt to associate a nonzero temperature with it. On the

other hand, there must be some relationship between dM , the change in the

mass of a black hole, and dA, the change in its horizon area. We have already

seen in the Penrose process and its charged analog that when dA = 0 one has

dM = 
dJ + �dQ, where J and Q are the angular momentum and charge

of the hole and 
 and � are the angular velocity and electric potential of

the horizon. This expresses changes of the energy of the hole in reversible

processes like work done on a thermodynamic system or a change in the

number of particles. It is like the First Law of thermodynamics but with the

heat ow term dQ = TdS missing.

2.1.1 Black hole temperature as surface gravity

It turns out that this missing term is given by �dA=8�G, where � is the

surface gravity of the horizon. The surface gravity of a stationary black hole

can be de�ned assuming the event horizon is a Killing horizon, i.e. that the

null horizon generators are orbits of a Killing �eld. (See next section for more

on this assumption.) Then � is de�ned as the magnitude of the gradient of

the norm of the horizon generating Killing �eld �

a

= �

a

+
 

a

, evaluated at
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the horizon. That is,

�

2

:= �(r

a

j�j)(r

a

j�j) (2.1)

at the horizon. An equivalent de�nition of � is the the magnitude of the

acceleration, with respect to Killing time, of a stationary zero angular mo-

mentum particle just outside the horizon. This is the same as the force per

unit mass that must be applied at in�nity in order to hold the particle on

its path. For a nonrotating neutral black hole the surface gravity is given

by 1=4M , so a larger black hole has a smaller surface gravity. This happens

to be identical to the Newtonian surface gravity of a spherical mass M with

radius equal to the Schwarzschild radius 2M .

2.1.2 Zeroth Law

Although � is de�ned locally on the horizon, it turns out that it is always con-

stant over the horizon of a stationary black hole. This constancy is reminis-

cent of the Zeroth Law of thermodynamics which states that the temperature

is uniform everywhere in a system in thermal equilibrium. The constancy

of � can be traced to the special properties of the horizon of a stationary

black hole. It can be proved without �eld equations or energy conditions

[Carter, R�acz & Wald] assuming the horizon is a Killing horizon (i.e. there

is a Killing �eld tangent to the null generators of the horizon) and that the

black hole is either (i) static (i.e. stationary and time reection symmetric),

or (ii) axisymmetric and \t-�" reection symmetric. Alternatively, it can

be proved [Hawking] assuming only stationarity together with the Einstein

�eld equation with the dominant energy condition for matter. (Assuming

also hyperbolic �eld equations for matter, and analyticity of the spacetime,

Hawking also shows that the event horizon must be a Killing horizon, and

that the spacetime must be either static or axisymmetric.)
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2.1.3 First law

For a rotating charged black hole, the First Law takes the form

dM = �dA=8�G + 
dJ + �dQ: (2.2)

This First Law relates nearby stationary black hole solutions of the Einstein

equation, and has been derived in many ways. If stationary matter (other

than the electromagnetic �eld) is present outside the black hole, then there

are additional matter terms on the right hand side of (2.2). The surface

gravity � evidently plays the role of temperature. Although the quantities

�, 
, and � are all de�ned locally on the horizon, they are always constant

over the horizon of a stationary black hole (modulo some assumptions; see

above for the case of � and, implicitly, 
.)

First Law and \heat" ow

It is possible to understand the entropy term �dA=8�G in the �rst law by

considering a quasistatic process in which a bit of mass is added to a black

hole. Again for simplicity let us assume the hole is nonrotating and neutral,

so the mass change is just the ux of the conserved energy current T

ab

�

a

through the horizon: �M =

R

T

ab

�

a

k

b

d�dA. Here dA is the cross-sectional

area element, � is an a�ne parameter along the horizon generators, and k

a

is

the tangent vector to the horizon generators with respect to �. The Killing

vector �

a

is given on the horizon by �

a

= ��k

a

(with a certain choice for the

origin of �). Using the Einstein equation we thus have

�M = (�=8�G)

Z

R

ab

k

a

k

b

� d�dA (2.3)

= (�=8�G)

Z

d�

d�

� d�dA (2.4)

= (�=8�G)

Z

(��) d�dA (2.5)

23



= (�=8�G)�A: (2.6)

The second equality uses the focusing equation neglecting the quadratic

terms �

2

and �

2

, the third uses integration by parts with the boundary term

dropped since the black hole is initially and �nally stationary, and the last

equality follows directly from the de�nition of �.

2.1.4 Second and Third Laws

Continuing with the analogy, the Second Law is of course Hawking's area

theorem, stating that the horizon area can never decrease assuming Cosmic

Censorship and a positive energy condition. The Third Law also has an

analog in black hole physics, namely, the surface gravity of the horizon cannot

be reduced to zero in a �nite number of steps. Validity of this law has been

suggested by investigations of the orbits of charged test particles around a

charged rotating black hole. A precise formulation of this Third Law has

been given and proved under some assumptions by Israel.

Signi�cance of the Third Law

An idea of the signi�cance of the Third Law can be gleaned by thinking about

how one might try to violate it. First, for a nonrotating neutral black hole,

� is decreased when mass is added to the hole. (So the hole has negative

speci�c heat.) But it would take an in�nite amount of mass to reduce � to

zero. A general rotating, charged black hole with angular momentum J and

charge Q has a surface gravity and horizon area given by

� = 4��=A; A = 4�[2M(M + �)�Q

2

] (2.7)

with

� = (M

2

�Q

2

� J

2

=M

2

)

1=2

: (2.8)

An extremal black hole is one for which � = 0. For an extremal black hole,

� vanishes and A = 4�(2M

2

� Q

2

). Thus, an extremal black hole has zero

\temperature", but nonzero \entropy". (Thus the Planck form of the Third

law does not hold for black holes. Also it should be remarked that if the

extremal state is \eternal" rather than being reached from a non-extremal

one, the entropy that enters a proper variational form of the �rst law is not
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the area and, in fact, vanishes.) IfM

2

< Q

2

+J

2

=M

2

then the spacetime has

a naked singularity and is not a black hole at all. Thus if the surface gravity

could actually be reduced to zero, one would be only in�nitesimally far from

creating a naked singularity, violating Cosmic Censorship.

To reduce the surface gravity to zero you might thus try to inject a suf-

�cient amount of charge or angular momentum into the hole. Suppose you

try to drop a charge q with mass m into a nonrotating charged black hole of

mass M and charge Q < M , trying to make Q + q = M +m. In order for

the gravitational attraction to be stronger than the electrostatic repulsion

you must choose mM > qQ, so q=m < M=Q. But this inequality insures

that Q + q < M + m. Similarly if you try to inject enough orbital angular

momentum to a spinning black hole you �nd that the particle simply misses

the hole. If you try to drop a spinning particle along the axis of a black

hole spinning the same way, you �nd there is a gravitational spin-spin force

that is repulsive and just strong enough to prevent you from reducing � to

zero. If you try to drop an electrically charged particle into a spinning black

hole along the axis (say), there is presumably some kind of \self-force" on

the charge that repels it from the hole, though I do not know a reference for

this. Finally, magnetic charge contributes to � in the same way as an electric

charge, so you might try dropping a magnetic monopole into an electrically

charged black hole. This sitation has been analyzed and, again, one �nds

that the necessary repulsive force arises.
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2.2 Generalized second law

Bekenstein proposed that some multiple �A=�hG of the black hole area, mea-

sured in units of the squared Planck length L

2

p

= �hG=c

3

, is actually entropy,
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and he conjectured a generalized second law (GSL) which states that the sum

of the entropy outside the black hole and the entropy of the black hole itself

will never decrease:

�(S

outside

+ �A=�hG) � 0 (2.9)

Classically, it seems possible to violate the GSL, using processes like those

already considered: A box containing entropy in the form of, say, radiation,

can be lowered to the horizon of a black hole and dropped in. For an ideal,

in�nitesimal box all of the energy can be extracted at in�nity, so when the

box is dropped in it adds no mass to the hole. Thus the horizon area does

not change, but the entropy of the exterior has decreased, violating the GSL.

This may be considered yet another aw in the thermodynamic analogy:

F4. the GSL can be violated by adding entropy to a black hole without

changing its area.

At the purely classical level, it thus appears that the GSL is simply not

true. Note however that as �h ! 0, the entropy �A=�hG diverges, and an

in�nitesimal area change can make a �nite change in the Bekenstein entropy.

The other aws (F1-F3) in the thermodynamic analogy are also in a sense

resolved in the �h! 0 limit. F2 is resolved by Bekenstein's postulate, while F3

is resolved because a �nite decrease in area would imply an in�nite decrease

in entropy. Furthermore, the �rst law implies that the black hole has a

Bekenstein temperature T

B

= �h�=8��, which vanishes in the classical limit,

thus resolving aw F1. The Bekenstein proposal therefore \explains" the

apparent aws in the thermodynamic analogy, and it suggests very strongly

that the analogy is much more than an analogy. It turns out that, with

quantum e�ects included, the GSL is indeed true after all, with the coe�cient

� equal to 1/4.
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2.3 Post-Einsteinian corrections

It is generally believed that the Einstein-Hilbert action which yields the Ein-

stein �eld equation is merely the lowest order term in an e�ective action
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containing an in�nite number of higher curvature terms, as well as nonlocal

terms and other exotica. The presumption is that underlying general rela-

tivity is a more fundamental theory, for example string theory, or something

yet unknown. In any case, the low energy e�ective action would contain

such terms. How do these considerations a�ect black hole thermodynamics?

Should the entire discussion be carried out in the context of more general

�eld equations, or are all corrections to the Einstein equation too small to

be relevant at the classical level? There seems to be no reason in principle

why the corrections must necessarily be so small, so it is at least interesting

to consider how black hole thermodynamics changes in the presence of, say

higher curvature terms in the action.

Already in the Zeroth Law (constancy of the surface gravity) a potential

problem arises. The proof that uses the dominant energy condition is not

applicable, since in e�ect the higher curvature terms act as a stress-energy

tensor that violates this condition. However, the Zeroth Law can also be

proved with other fairly reasonable assumptions (cf. section 2.1.2). Assuming

the Zeroth Law, a modi�ed form of the First Law can be proved for a wide

class of generally covariant actions [Wald, 1993]. The only change is that

what plays the role of the entropy is not just the area. For example, for a

Lagrangian of the form L = L( ;r

a

 ; g

ab

; R

abcd

), (where  stands for matter

�elds and no derivatives other than those explicitly indicated appear in L),

the modi�ed \entropy" is given by [Visser 1993, Jacobson, Kang and Myers

1994, Iyer and Wald 1994]

S = �2�

I

@L

@R

abcd

�

ab

�

cd

��: (2.10)

The integral is over a slice of the horizon, �

ab

is the unit normal bivector to the

horizon, and �� is the area element on the horizon slice. (The normalization

is chosen so that in the Einstein case one has S = A=4G. In special cases,

this modi�ed \entropy" has been shown [Jacobson, Kang and Myers 1995] to

satisfy the Second Law (a non-decrease theorem), but in general there seems

to be no reason why such a result should hold.

It seems that a proper treatment of the higher order contributions to the

e�ective action must be embedded in a full description of the quantum sta-

tistical mechanics of gravitating systems. It further seems that the physics

ensuring stability of the system must be understood before the (presumed)
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validity of the thermodynamic laws can be established. There may be im-

portant insight about gravity to be gained by considering these issues.

References

Visser, M. 1993, \Dirty black holes: entropy as a surface term", Phys. Rev.

D 48, 5697.

R.M. Wald, \Black Hole Entropy is the Noether Charge", Phys. Rev. D48,

R3427 (1993).

V. Iyer and R.M. Wald, \Some Properties of Noether Charge and a Proposal

for Dynamical Black Hole Entropy", Phys. Rev. D50, 846 (1994).

T. Jacobson and R.C. Myers, \Black Hole Entropy and Higher Curvature

Interactions", Phys. Rev. Lett. 70, 3684 (1993).

T. Jacobson, G.W. Kang, and R.C. Myers, \On Black Hole Entropy", Phys.

Rev. D49, 6587 (1995).

T. Jacobson, G.W. Kang, and R.C. Myers, \Increase of Black Hole Entropy

in Higher Curvature Gravity", Phys. Rev. D52, 3518 (1995).

2.4 Thermodynamic temperature

The analogy between surface gravity and temperature was based in the above

discussion on the way the temperature enters the First Law (2.2), the fact

that it is constant over the horizon (Zeroth Law), and the fact that it is

(probably) impossible to reduce it to zero in a physical process (Third Law).

In this section we discuss a sense in which a black hole has a thermody-

namic temperature, de�ned in terms of the e�ciency of heat engines, that is

proportional to its surface gravity. The discussion is a variation on that of

[Sciama, 1976, see section 1.1.4].

A thermodynamic de�nition of temperature can be given by virtue of the

second law in the (Clausius) form which states that it is impossible to pump

heat from a colder body to a hotter one in a cycle with no other changes.

Given this Second Law, the ratio Q

in

=Q

out

of the heat in to the heat out

in any reversible heat engine cycle operating between two heat baths must

be a universal constant characteristic of that pair of equilibrium states. The

ratio of the thermodynamic temperatures of the two equilibrium states is
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then de�ned by T

in

=T

out

:= Q

in

=Q

out

. This de�nes the temperature of all

equilibrium states up to an overall arbitrary constant. In a heat engine, the

heat out is wasted, so the most e�cient engine is one which dumps its heat

into the coldest reservoir.

Applying this de�nition to a black hole, it follows that the temperature of

the hole must be zero, since as we have seen one can, with perfect e�ciency,

extract the entire rest mass of a particle (or of heat) as useful work by

dumping the heat into a black hole after lowering it down all the way to

the horizon. Note however that to arrive at this conclusion we must take

the unphysical limit of really lowering the heat precisely all the way to the

horizon.

A meaningful expression for the ratio of the temperatures of two black

holes can be obtained by passing to this unphysical limit in a fairly natural

manner. Consider operating a heat engine of the type just discussed between

two black holes separated very far from one another, and suppose there is a

minimum proper distance d

min

to which the horizon of either black hole is

approached. We shall assume that this distance is the same for both black

holes, and take the limit as d

min

! 0. We also assume for simplicity that

the black holes are nonrotating; it is presumably possible to generalize the

analysis to the rotating case.

If the \heat" has a rest mass m, it has Killing energy E

1

= �

1

m at

its lowest point outside the horizon of the �rst black hole, where � is the

norm of the Killing �eld. The heat is then lifted slowly and lowered back

down to just outside the horizon of the second black hole, where it has

Killing energy E

2

= �

2

m, and is then dumped into the second hole. The

di�erence E

1

� E

2

is the useful work extracted in the process, and the ratio

T

1

=T

2

:= E

1

=E

2

= �

1

=�

2

de�nes the ratio of the thermodynamic temperatures

of the two holes. Now near the horizon we can approximate � ' �d

min

, where

� is exactly the surface gravity that entered above in the First Law. At the

lowest points we thus have �

1

=�

2

' �

1

=�

2

, which becomes exact in the limit

d

min

! 0, so that T

1

=T

2

= �

1

=�

2

. That is, the thermodynamic temperature

of a black hole is proportional to its surface gravity.

This derivation hinges on the limiting procedure, in which a common

minimum distance of approach to the horizon taken to zero, which is not

very well motivated. It is therefore worth pointing out that this is equivalent

to taking a common maximum proper acceleration to in�nity. The proper

acceleration of a static worldline is given by a = �=� in the limit that the
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horizon is approached, so a is just the inverse of the proper distance from

the horizon. Alternatively, rather than taking a limit as the horizon is ap-

proached, one might imagine that there is some common minimum distance

of approach or maximum acceleration to which the heat will be subjected in

any given transfer process.
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Chapter 3

Quantum black hole

thermodynamics

Classical black hole physics cries out for the incorporation of �h e�ects, so the

thermodynamic \analogy" can become true thermodynamics. Since general

relativity is relativistic, it is not quantum mechanics but relativistic quan-

tum �eld theory that is called for. Thus, in principle, one should consider

\quantum gravity", whatever that may be. Although no one knows for sure

what quantum gravity actually is, formal treatment of its semiclassical limit

by Gibbons and Hawking in a path integral framework revealed one way

in which the analogy can become an identity. This will be discussed later.

An alternate semiclassical approach|and historically the �rst| is to con-

sider quantum �elds in a �xed black hole background. A quantum �eld has

vacuum uctuations that permeate all of spacetime, so there is always some-

thing going on, even in the \empty space" around a black hole. Thus turning

on the vacuum uctuations of quantum �elds can have a profound e�ect on

the thermodynamics of black holes. The principal e�ect is the existence of

Hawking radiation.

The historical route to Hawking's discovery is worth mentioning. (See

Thorne's book, Black Holes and Time Warps, for an interesting account.)

After the Penrose process was invented, it was only a short step to consider

a similar process using waves rather than particles [Zel'dovich,Misner], a phe-

nomenon dubbed \super-radiance". Quantum mechanically, supperradiance

corresponds to stimulated emission, so it was then natural to ask whether

a rotating black hole would spontaneously radiate [Zel'dovich, Starobinsky,
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Unruh]. In trying to improve on the calculations in favor of spontaneous

emission, Hawking stumbled onto the fact that even a non-rotating black

hole would emit particles, and it would do so with a thermal spectrum at a

temperature

T

H

= �h�=2�: (3.1)

Spontaneous emission from a rotating black hole can be visualized as pair

production (Fig. 3.1). The Killing energy and angular momentum must be

ergo-
region

Figure 3.1: Pair production in the ergoregion of a rotating black hole (left); and

Hakwing e�ect: pair production straddling the horizon (right).

conserved, so the two particles must have opposite values for these. In the

ergoregion there are negative energy states for real particles, so such a pair

can be created there, with the negative energy partner later falling across

the event horizon into the black hole. In the nonrotating case the ergoregion

exists only beyond the horizon, however the pair creation process can straddle

the horizon (Fig. 3.1). This turns out to have a thermal amplitude, and gives

rise to the Hawking e�ect.

Let us now briey consider the implications of the Hawking e�ect for

black hole thermodynamics. First of all the surface gravity �, which was

already implicated as a temperature in the classical theory, turns out to give

rise to the true Hawking temperature �h�=2�. From the First Law (2.2) it

then follows that the entropy of a black hole is given by

S

BH

= A=4�hG;

32



one fourth the area in squared Planck lengths (the subscript `BH' conve-

niently stands for both `Bekenstein-Hawking' and `black hole'). The zero-

temperature and dimensional aws (F1) and (F2) (cf. Chapter 2) are thus

removed. Furthermore, the Hawking radiation leads to a decrease in the

horizon area. This is obvious in the nonrotating case, since the black hole

loses mass, but it also happens in the rotating case. The reason is that the

negative energy partner in the Hawking pair creation process is never a real

particle outside the horizon, so it need not carry a locally future-pointing

four-momentum ux across the horizon. The Bekenstein-Hawking entropy

can therefore decrease, so aw (F3) is removed. The remaining aw in the

thermodynamic analogy was the failure of the generalized second law (F4)

(cf. section 2.2). This too is repaired by the incorporation of quantum �eld

e�ects, at least in quasistationary processes. Since the resolution is rather

more involved I will defer it to a later discussion (cf. section 3.3).

3.1 The Unruh e�ect

Underlying the Hawking e�ect is the Unruh e�ect, which is the fact that the

vacuum in Minkowski space appears to be a thermal state at temperature

T

U

= �ha=2� (3.2)

when viewed by an observer with acceleration a. Thus there is already some-

thing `thermal' about the vacuum uctuations even in at spacetime. Since

it lies at the core of the entire subject, let us �rst delve in some detail into

the theory of the Unruh e�ect, before coming back to the Hawking e�ect.

The Unruh e�ect was discovered after the Hawking e�ect, as a result of

e�orts to understand the Hawking e�ect. The original observation was that a

detector coupled to a quantum �eld and accelerating through the Minkowski

vacuum will be thermally excited. A related observation by Davies was

that a mirror accelerating through the vacuum will radiate thermally. But

the essential point is that the vacuum itself has a thermal character, quite

independently of anything that might be coupled to it.

Owing to the symmetry of the Minkowski vacuum under translations and

Lorentz tranformations, the vacuum will appear stationary in a uniformly

accelerated frame, but this appearance will not be independent of the ac-

celeration. Moreover, since it is the ground state, it is stable to dynamical
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perturbations. Sciama pointed out that stationarity and stability of the state

alone are su�cient to indicate that the state is a thermal one, as shown by

Haag et al in axiomatic quantum �eld theory. Note that the time scale asso-

ciated with the Unruh temperature, �h=T

H

= 2�c=a, is the time it takes for

the velocity to change by something of order c when the acceleration is a.

Two derivations of the Unruh e�ect will now be given, both of which are

valid for arbitrary interacting scalar �elds in spacetime of any dimension.

(The generalization to �elds of nonzero spin is straightforward.)

3.1.1 Symmetries of Minkowski spacetime

The Minkowski line element in two dimensions can be written in both \Carte-

sian" (Minkowski) and \polar" (Rindler) coordinates:

ds

2

= dt

2

� dz

2

= �

2

d�

2

� d�

2

(3.3)

where the coordinates are related by

t = � sinh �; z = � cosh �: (3.4)

The line element in the remaining spatial dimensions plays no role in the

following discussion and is omitted for simplicity. The coordinates (�; �)

are nonsingular in the ranges � 2 (0;1) and � 2 (�1;1), and cover the

\Rindler wedge" z > jtj in Minkowski space (see Fig. 3.2). In the �rst form of

the line element the translation symmetries generated by the Killing vectors

@=@t and @=@z are manifest, and in the second form the boost symmetry gen-

erated by the Killing vector @=@� is manifest. The latter is clearly analogous

to rotational symmetry in Euclidean space. The full collection of translation

and boost symmetries of Minkowski spacetime is called the Poincar�e group.

3.1.2 Two-point function and KMS condition

A thermal density matrix � = Z

�1

exp(��H) has two identifying properties:

First, it is obviously stationary, since it commutes with the Hamiltonian H.

Second, because exp(��H) coincides with the evolution operator exp(�itH)

for t = �i�, expectation values in the state � possess a certain symmetry

under translation by �i� called the KMS condition[Sewellbook,Haagbook]:
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η

t

=

x 

=

=

0

=  0

ξ const.

const.

Figure 3.2: Two-dimensional at spacetime in Minkowski and Rindler coordi-

nates. A hyperbola of constant � is a uniformly accelerated timelike worldline

with proper acceleration �

�1

. A boost shifts � and preserves �.

Let hAi

�

denote the expectation value tr(�A), and let A

t

denote the time

translation by t of the operator A. Using cyclicity of the trace we have

hA

�i�

Bi

�

= Z

�1

tr

�

e

��H

(e

�H

Ae

��H

)B

�

(3.5)

= Z

�1

tr

�

e

��H

BA

�

(3.6)

= hBAi

�

: (3.7)

Note that for nice enough operators A and B, hA

�i�

Bi

�

will be analytic in

the strip 0 < � < �. Now let us compare this behavior with that of the

two-point function along a uniformly accelerated worldline in the Minkowski

vacuum.

If, as is usual, the vacuum state shares the symmetry of Minkowski space-

time, then, in particular, the 2-point function G(x; x

0

) = h�(x)�(x

0

)i must

be a Poincar�e invariant function of x and x

0

. Thus it must depend on them

only through the invariant interval, so one has G(x; x

0

) = f((x � x

0

)

2

) for

some function f . Now consider an \observer" traveling along the hyperbolic

trajectory � = a

�1

. This worldline has constant proper acceleration a, and a�

is the proper time along the world line. Let us examine the 2-point function

along this hyperbola:

G(�; �

0

) � G(x(�); x(�

0

)) (3.8)
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= f

�

[x(�)� x(�

0

)]

2

�

(3.9)

= f

�

4a

�2

sinh

2

[(� � �

0

)=2]

�

; (3.10)

where the third equality follows from (3.4). Now, since sinh

2

(�=2) is periodic

under translations of � by 2�i, it appears that G(�; �

0

) is periodic under

such translations in each argument. In terms of the 2-point function the

KMS condition implies G(� � i�; �

0

) = G(�

0

; �), which is not the same as

translation invariance by �i� in each argument. Does this mean that in fact

the 2-point function in the Minkowski vacuum along the accelerated worldline

is not thermal? The answer is \no", because the above \proof" that G(�; �

0

)

is periodic was bogus. First of all, a Poincar�e invariant function of x and x

0

need not depend only on the invariant interval. It can also depend on the

invariant step-function �(x

0

� x

00

)�((x � x

0

)

2

). More generally, the analytic

properties of the function f have not been speci�ed, so one cannot conclude

from the periodicity of sinh

2

(�=2) that f itself is periodic. For example, f

might involve the square root, sinh(�=2), which is anti-periodic. In fact, this

is just what happens.

To reveal the analytic behavior of G(x; x

0

), it is necessary to incorporate

the conditions that the spacetime momenta of states in the Hilbert space

lie inside or on the future light cone and that the vacuum has no four-

momentum. One can show (by inserting a complete set of states between

the operators) that these imply there exists an integral representation for

the 2-point function of the form

G(x; x

0

) =

Z

d

n

k �(k

0

)J(k

2

)e

�ik(x�x

0

)

; (3.11)

where J(k

2

) is a function of the invariant k

2

that vanishes when k is space-

like. Now let us evaluate G(�; �

0

) along the hyperbolic trajectory. Lorentz

invariance allows us to transform to the frame in which x � x

0

has only a

time component which is given by 2a

�1

sinh[(� � �

0

)=2]). Thus we have

G(�; �

0

) =

Z

d

n

k �(k

0

)J(k

2

)e

�i2a

�1

k

0

sinh[(���

0

)=2]

: (3.12)

Now consider analytic continuation � ! ��i�. Since only k

0

> 0 contributes,

the integral is convergent as long as the imaginary part of the sinh is negative.

One has sinh(x+ iy) = sinhx cos y + i cosh x sin y, so the integral converges
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as long as 0 < � < 2�. Since sinh(x�i�) = sinh(�x), we can �nally conclude

that G(� � i2�; �

0

) = G(�

0

; �), which is the KMS condition (3.7).

3.1.3 The vacuum state as a thermal density matrix

The essence of the Unruh e�ect is the fact that the density matrix describing

the Minkowski vacuum, traced over the states in the region z < 0, is precisely

a Gibbs state for the boost Hamiltonian H

B

at a \temperature" T = 1=2�:

tr

z<0

j0ih0j = Z

�1

exp(�2�H

B

); (3.13)

H

B

=

Z

T

ab

(@=@�)

a

d�

b

(3.14)

This rather amazing fact has been proved in varying degrees of rigor by many

di�erent authors. A sloppy path integral argument making it very plausible

will be sketched below.

Since the boost Hamiltonian has dimensions of action rather than energy,

so does the \temperature". To determine the local temperature seen by an

observer following a given orbit of the Killing �eld, note from (3.3) that the

norm of the Killing �eld @=@� on the orbit � = a

�1

is a

�1

, whereas the

observer has unit 4-velocity. If the Killing �eld is scaled by a so as to agree

with the unit 4-velocity at � = a

�1

, then the boost Hamiltonian (3.14) and

temperature are scaled in the same way. Thus the temperature appropriate to

the observer at � = a

�1

is T = a=2�. Since a is the proper acceleration of this

observer, we recover the Unruh temperature de�ned above. Alternatively, the

two-point function de�ned by (3.13) along the hyperbola obviously satis�es

the KMS condition relative to boost time � at temperature 1=2�. When

expressed in terms of proper time a�, this corresponds to the temperature

a=2�.

One can view the relative coolness of the state at larger values of � as be-

ing due to a redshift e�ect|in this case a Doppler shift| as follows. Suppose

a uniformly accelerated observer at �

0

sends some of the thermal radiation

he sees to another uniformly accelerated observer at �

1

> �

0

. This radi-

ation will su�er a redshift given by the ratio of the norms of the Killing

�eld: say p is the spacetime momentum of the radiation. Then p � (@=@�)

is conserved[Waldbook], but the energy locally measured by the uniformly

accelerated observer is p � (@=@�)=j@=@�j, so that E

1

=E

0

= j@=@�j

0

=j@=@�j

1

.

37



This is precisely the same as the ratio T

1

=T

0

of the locally measured tem-

peratures. At in�nity j@=@�j = � diverges, so the temperature drops to zero,

which is consistent with the vanishing acceleration of the boost orbits at

in�nity.

The path integral argument to establish (3.13) goes like this: LetH be the

Hamiltonian generating ordinary time translation in Minkowski space. The

vacuum j0i is the lowest energy state, and we suppose it has vanishing energy:

Hj0i = 0. If j i is any state with nonzero overlap with the vacuum, then

exp(��H)j i becomes proportional to j0i as � goes to in�nity. That is, the

vacuum wavefunctional 	

0

[�] for a �eld � is proportional to h�j exp(��H)j i

as � ! 1. Now this is just a matrix element of the evolution operator

between imaginary times � = �1 and � = 0, and such matrix elements can

be expressed as a path integral in the \lower half" of Euclidean space:

	

0

[�] =

Z

�(0)

�(�1)

D� exp(�I) (3.15)

where I is the Euclidean action.

The key idea in recovering (3.13) is to look at (3.15) in terms of the

angular \time"-slicing of Euclidean space instead of the constant � slicing.

(See Fig. 3.3.) The relevant Euclidean metric (restricted to two dimensions

φ φL R

Figure 3.3: Time slicings of Euclideanized Minkowski space. The horizontal lines

are constant � surfaces and the radial lines are constant � surfaces.

for notational convenience) is given by

ds

2

= d�

2

+ d�

2

= �

2

d�

2

+ d�

2

: (3.16)
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Adopting the angular slicing, the path integral (3.15) is seen to yield an

expression for the vacuum wavefunctional as a matrix element of the boost

Hamiltonian (3.14) which coincides with the generator of rotations in Eu-

clidean space:

h�

L

�

R

j0i = Nh�

R

j exp(��H

B

)j�

L

i; (3.17)

where �

L

and �

R

are the restrictions of the boundary value �(0) to the left

and right half spaces respectively, and a normalization factor N is included.

The Hilbert space H

R

on which the boost Hamiltonian acts consists of the

�eld con�gurations on the right half space z > 0, and is being identi�ed via

reection (really, by reection composed with CPT[BisoWich,Sewell]) with

the Hilbert space H

L

of �eld con�gurations on the left half space z < 0.

The entire Hilbert space is H = H

L


H

R

, modulo the degrees of freedom at

z = 0. (The boundary conditions at z = 0 are being completely glossed over

here.)

Using the expression (3.17) for the vacuum wavefunctional we can now

compute the reduced density matrix for the Hilbert space H

R

: Now consider

the vacuum expectation value of an operator O

R

that is localized on the right

half space:

h�

0

j (tr

L

j0ih0) j�i =

X

�

L

h�

L

�

0

j0ih0j�

L

�i (3.18)

= N

2

h�

0

j exp(��H

B

)j�

L

ih�

L

j exp(��H

B

)j�i(3.19)

= N

2

h�

0

j exp(�2�H

B

)j�i (3.20)

where (3.17) was used in the second equality. This shows that, as far as

observables located on the right half space are concerned, the vacuum state

is given by the thermal density matrix (3.13). More generally, this holds for

observables localized anywhere in the Rindler wedge, as follows from boost

invariance of (3.13).

This path integral argument directly generalizes to all static spacetimes

with a bifurcate Killing horizon, such as the Schwarzschild and deSitter space-

times[LaFlamme,Jacobsonhh]. In the general setting, the state de�ned by the

path integral cannot be called \the" vacuum, but it is a natural state that is

invariant under the static Killing symmetry of the background and is nonsin-

gular on the time slice where the boundary values of the �eld are speci�ed,

including the bifurcation surface.
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3.1.4 Correlations in the vacuum

Let us now look more closely at the Minkowski vacuum state from the per-

spective of the Unruh e�ect. I want to display explicitly the correlations

between positive energy Rindler quanta on the right and negative energy

quanta on the left side of the Rindler horizon. Also, I shall derive the Unruh

e�ect one more time, in a way that will generalize to a derivation of the

Hakwing e�ect. For simplicity I restrict attention to a free scalar �eld.

The correlated structure of the vacuum in at spacetime is already ev-

ident in the result of the section 3.1.3. Recall that we showed the vacuum

wavefunctional can be expressed as h�

L

�

R

j0i = Nh�

R

j exp(��H

B

)j�

L

i. Im-

plicit in this representation is an identi�cation I : H

�

L

! H

R

, which we made

in the �eld con�guration representation. Using I, the vacuum state can be

written (up to normalization) as j0i = exp(��H

B

)I. The map I is a state

in H

L


H

R

, which can be written as I =

P

n

jni

L

jni

R

, where jni

L

and jni

R

are corresponding boost energy eigenstates in the left and right wedges, and

H

B

jni = E

n

jni. So we have

j0i =

X

n

exp(��E

n

)jni

L

jni

R

: (3.21)

This shows that the Minkowski vacuum contains correlations between corre-

sponding modes on either side of the Rindler horizon.

Let us now rederive this result by looking at local �eld theory near the

Rindler horizon in Minkowski space. Let u = t � z and v = t + z, and

we suppress the transverse coordinates. The general solution to the wave

equation has the form f(u) + g(v). We shall restrict attention to the right-

moving modes, i.e. those that are functions of u only. The Klein-Gordon

inner product for such modes is

(f

1

; f

2

) = i

Z

du[f

�

1

@

u

f

2

� (@

u

f

�

1

)f

2

]: (3.22)
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Now consider the mode

p = exp[i� ln(�u)] (3.23)

for u < 0, and p = 0 for u > 0. This is the form that an outgoing mode

would have near a black hole horizon as well, before climbing out to in�nity.

(For convenience I work here with a single frequency mode. Imagine in

the following that we really form a normalized wavepacket with frequencies

in a small interval about �.) In terms of the Rindler coordinates � and �

introduced in section 3.1.1 we have u = ��e

��

, so p = exp[�i�(� � ln �)].

Thus p is a positive boost frequency mode if � is positive. This can also be

seen directly from the u coordinate form (3.21) by writing the Killing vector

� = @=@� in the u-v coordinates,

� = v@

v

� u@

u

: (3.24)

Using (3.22) one sees immediately that �

a

r

a

p = �i�p.

The wavepacket p has positive norm in the inner product (3.20), and

it corresponds to a one particle state in the right hand Rindler Fock space.

However|and here comes the most important point of the entire discussion|

p does not have purely positive frequency with respect to u. This much is clear

since p vanishes for u > 0, and a purely positive frequency function cannot

vanish on the half line (or on any open interval, since it is the boundary value

of an analytic function on the lower half complex plane). Thus the Rindler

mode p does not correspond to a one particle state in the Minkowski Fock

space; rather it is an excited mode in the Minkowski vacuum.

Our goal is to express the Minkowski vacuum in terms of the Rindler Fock

states. To this end we exploit a trick due to Unruh: consider a new mode

that agrees with p for u < 0, but rather than vanishing for u > 0 is de�ned

by analytic continuation in the lower half u-plane. This new mode will have

purely positive u-frequency. The function lnu + i� is analytic in the lower

half plane, and agrees with ln(�u) on the negative real axis, if the branch cut

is taken in the upper half plane. Thus Unruh's positive u-frequency mode is

� = p+ e

���

~p; (3.25)

where ~p(u) = p(�u) = exp[i� lnu] is just the mode p \ipped" over the

horizon (see Fig. 3.4). This positive u-frequency mode does correspond
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to a one particle state in the Minkowski Fock space, and in the Minkowski

vacuum it is unexcited. That is, a(�)j0i = 0, where a(�) is the corresponding

annihilation operator, a(�) = (�;

^

�)

KG

, and

^

� is the quantum �eld operator.

p
p∼

Figure 3.4: The mode p and its \ipped" partner ~p have both positive and neg-

ative u-frequency components, but the combination p + e

���

~p has only positive

frequencies.

To describe the Minkowski vacuum in Rindler Fock space we now just

need to express a(�) in terms of Rindler annihilation and creation operators.

Linearity gives a(�) = a(p) + e

���

a(~p): However, while p is a positive norm

Rindler mode, the norm of ~p is negative. Thus the \annihilation" operator

should be regarded instead as (minus) the creation operator for the complex

conjugate mode, a(~p) = �a

y

(~p

�

). The key equation we are after is thus

a(�) = a(p)� e

���

a

y

(~p

�

): (3.26)

Now since a(�) annihilates j0i, we get the equation

a(p)j0i = e

���

a

y

(~p

�

)j0i: (3.27)

This equation does not uniquely determine the state, since if j0i is a solution

then so is F [a

y

(~p

�

)]j0i for any function F . To �x this freedom, note that

we can apply Unruh's trick starting instead with the mode ~p

�

inside the

horizon, and analytically continuing out in the lower half u-plane to construct

another positive u-frequency mode �

0

= ~p

�

+ e

���

p

�

. The vacuum condition

a(�

0

)j0i = 0 then gives us a second equation, a(~p

�

)j0i = e

���

a

y

(p)j0i, which
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is the same as (3.25) with the roles of p and ~p

�

reversed. These two equations

can be solved to express the part of j0i involving the � and �

0

modes as a

state in the product of left and right Rindler Fock spaces. The solution is

j0i

��

0

= exp

h

e

���

a

y

(~p

�

)a

y

(p)

i

j0i

L

j0i

R

: (3.28)

Expanding the exponential then yields

j0i

��

0

=

X

n

e

��n�

jni

L

jni

R

; (3.29)

with jni

L

=

1

p

n!

[a

y

(~p

�

)]

n

j0i

L

, and similarly for jni

R

. The structure of this

correlated state (3.27) is precisely the same as what we derived from the

Euclidean path integral argument, eqn. (3.19). When restricted to H

R

, this

state is a thermal density matrix at the dimensionless \temperature" 1=2�.

The mode ~p has the same, positive, Killing frequency as the mode p, as

is easily seen with the help of the expression (3.22) for the Killing vector.

Therefore ~p

�

has negative Killing frequency, so the state jni

L

has negative

Killing energy. Thus each set of positive boost energy p-particles on the

right is correlated to set of negative boost energy ~p

�

-particles on the left.

This observation is critical to understanding the balance of energy in the

Hawking e�ect.

3.2 The Hawking e�ect

At the heart of the Hawking e�ect is the Unruh e�ect. The key physics in

both is the correlated structure of the vacuum at short distances. These

correlations manifest themselves as the Hawking e�ect when the quantum

�eld is propagating in the background of a stationary black hole. Rather

than staying next to the horizon forever, the outgoing quanta outside the

event horizon gradually climb away from the horizon, leaving their correlated

partners on the other side to fall into the singularity.

In this section, I �rst describe the Hawking e�ect emphasizing the rela-

tion to accleration radiation, and highlighting the role of the gravitational

redshift. After briey indicating the consequences for black hole evaporation,

I then explain how to use the results of section 3.1.4 to derive the Hawking

e�ect. Finally, the disturbing role played by arbitrarily high frequency �eld

modes in the Hakwing e�ect is discussed.
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3.2.1 Gravitational acceleration radiation

Consider an accelerated nonrotating observer sitting at �xed radius r outside

a Schwarzschild black hole. For r very near the horizon R

s

, the acceleration

a is very large, and the associated timescale a

�1

is very small compared to

R

s

. The curvature of the spacetime is negligible on this timescale, so one

expects the vacuum uctuations on this scale to have the usual at space

form, provided the quantum �eld is in a state which is regular near the

horizon.

Under these assumptions, the accelerated observer will experience the

Unruh e�ect: the vacuum uctuations will appear to this observer as a ther-

mal bath at a temperature T = (�h=2�)a (although a freely falling observer

will describe the state at these scales as the vacuum). The outgoing modes of

this thermal bath will be redshifted as they climb away from the black hole.

The ratio of the temperatures measured by static observers at two di�erent

radii is T

2

=T

1

= �

1

=�

2

, where � is the norm of the time-translation Killing

�eld. At in�nity �

1

= 1, so we have an outgoing thermal ux in the rest

frame of the black hole at the (Hawking) temperature

T

1

= �

1

�ha=2� = �h�=2�

where � is the surface gravity.

For a Schwarzschild black hole, � = 1=2R

s

= 1=4GM , so the Hawking

temperature is T

H

= �h=8�GM , and the corresponding wavelength is �

H

=

2�=! = 8�

2

R

s

. A larger black hole is therefore cooler. Recall that in the case

of the at space Unruh e�ect, the redshifting to in�nity completely depletes

the acceleration radiation, since the norm of the boost Killing �eld diverges

at in�nity.

Two remarks should be made here regarding the state dependence of the

above argument. First, the argument is clearly invalid if the the state of

the quantum �eld is not regular near the horizon. For example, there is a

state called the \Boulware vacuum", or \static vacuum", which corresponds

the absence of excitations in a Fock space constructed with positive Killing

frequency modes as the one-particle states. In the Boulware vacuum, our

accelerated observer sees no particles at all. However, the short distance

divergence of the two-point function does not have the at space form as the

horizon is approached, and the expectation value of the stress energy tensor

becomes singular.
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The second remark is that it was important that we started with an ob-

server very close to the horizon. Only for such an observer is the acceleration

high enough, and therefore the timescale a

�1

short enough, that the vacuum

uctuations can be taken to have the universal at space form independent of

the details of the state of the �eld and the curvature of the spacetime. Thus,

for example, it would be incorrect to argue that an unaccelerated observer

at in�nity must (because he is unaccelerated) see no particles, since there is

no a priori justi�cation for assuming the state there looks like the Minkowski

vacuum. The lesson of the Hawking e�ect is that the state at in�nity in fact

does not look like the Minkowski vacuum.

3.2.2 Evaporation

Since a black hole radiates energy by Hakwing radiation, energy conservation

implies that it will lose mass. The rate of mass loss is about one Hawking

quantum M

�1

per R

s

= M (in Planck units �h = c = G = 1). That is,

dM=dt � �M

�2

. Another way to see this is to use Stefan's law. The

e�ective black hole area is R

2

s

� M

2

, while T

4

H

� M

�4

, and the product of

these gives M

�2

again as the rate.

Integrating the mass loss equation gives a lifetime of order M

3

. Putting

back the units this gives (M=M

P

)

3

T

P

' (M=1 gm)

3

� 10

�28

s. Thus a 10

15

gm black hole starts o� with a size of order 10

�13

cm, a temperature of order

10 MeV, and has a lifetime of about 10

17

s, the present age of the universe.

A solar mass (10

33

gm) black hole has a size of order 1 km, a temperature of

order 10

�11

eV, and lives 10

54

times the age of the universe!

3.2.3 Pair creation at the black hole horizon

The construction just applied at the Rindler horizon can also be applied

at a stationary black hole horizon. For example, consider a black hole line

element �

2

(s)dt

2

� dl

2

, where �

a

= (@=@t)

a

is the horizon generating Killing

�eld with surface gravity �. Near the horizon, � ' �l, so the line element

takes the (at) Rindler form �

2

d�

2

� d�

2

, with � = �t. Thus �

a

corresponds

to �@=@�, and the �-frequency called � in 3.21 corresponds to !=�, where !

is the frequency with respect to �

a

, �

a

r

a

p = �i!p.

For every ! a wavepacket can be constructed which is concentrated arbi-

trarily close to the horizon and has arbitrarily high frequency with respect to
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the time of some �xed free-fall observer crossing the horizon or, equivalently,

with respect to the a�ne parameter u along an ingoing null geodesic that

plays the role of u = t� z in the Rindler horizon case. Thus, provided the

state near the horizon looks, to a free-fall observer at very short distances,

like the Minkowski vacuum, we can conclude that it can also be described as

a correlated state of Boulware quanta with the same structure as (3.27). In

particular, the state restricted to the exterior of the horizon is a thermal one,

with Boltzmann factor exp(��=2�) = exp(��h!=T

H

), where T

H

= �h�=2� is

the Hawking temperature.

What is di�erent in the black hole case is how these pairs of thermal

quanta propagate. In at space they continue to swim in parallel on either

side of the horizon. In a black hole spacetime the gravitational tidal force

peels them apart. Mathematically, since the wavefronts propagate at �xed u,

and u = ��e

��

, � scales exponentially with � along a wavefront, increasing

toward the future and decreasing toward the past. Once � starts to be of

order the curvature radius, the Rindler approximation for the metric breaks

down. Thus, toward the future, the ingoing quanta eventually plunge into

the singularity, while the outgoing quanta eventually climb away from the

horizon, partially backscatter o� the angular momentumbarrier and the cur-

vature, and partially emerge to in�nity as exponentially redshifted thermal

quanta at the Hawking temperature. To every Hawking particle there is a

negative Killing energy \partner" that falls into the black hole. It is the

negative energy carried by this partner that is presumably responsible for

the mass loss of the hole.

The number of p-particles reaching in�nity thus takes the Planck form

N

p

= �

p

(e

�h!=T

H

� 1)

�1

; (3.30)

where the coe�cient �

p

is the fraction of p-particles that make it out to in-

�nity rather than being backscattered into the black hole. This is sometimes

called the greybody factor since it indicates the emissivity of the black hole

which is not that of a perfect blackbody. Another name for �

p

is the absorp-

tion coe�cient for the mode p, since it is equal to the fraction of p-particles

that would be absorbed by the black hole if sent in from in�nity.

The above reasoning shows that the Hawking radiation is a consequence

of the assumption that the state near the horizon is the vacuum as viewed by

free-fall observers at very short distances. Let us call a state with this prop-

erty a free-fall vacuum. The derivation of the Hawking e�ect is not complete
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until on has shown that the free-fall vacuum at the horizon indeed results

from a generic state prior to collapse of the matter that formed the black

hole. This is a reasonable sounding proposition, since the initial state is the

vacuum for the ultra high frequency modes, and the time and length scales

associated with the collapse are much longer than those associated with such

modes. Hawking carried out this step of the argument by following the mode

� all the way backwards in time along the horizon, through the collapsing

matter, and out to past null in�nity I

�

, using the geometrical optics approx-

imation. At I

�

the mode still has purely positive free-fall frequency, so since

it is in the vacuum at I

�

it is in the free-fall vacuum at the horizon.

3.2.4 The transplanckian puzzle

There is something disturbing about Hawking's reasoning however. As the

wavepacket is propagated backwards in time along the horizon, it is blueshift-

ing exponentially with respect to Killing time. For the very �rst Hawking

quanta that emerge after a black hole forms this is perhaps not so seri-

ous, since they have not experienced much blueshifting. But for quanta

that emerge a time t after the black hole formed, there is a blueshift of

order exp(�t). For a Schwarzschild black hole, � = 1=2R

s

, so after, say,

t = 1000R

s

, the blueshift factor is exp(500). That is, the ingoing mode has

frequency exp(500) times the frequency of the outgoing Hawking quantum

at in�nity. For a solar mass black hole, the factor is exp(10

5

) after only 2

seconds have passed.

Needless to say, we cannot be con�dent that we know what physics looks

like at such arbitrarily high, \transplanckian" frequencies. Of course if ex-

act local lorentz invariance is assumed, then any frequency can be Doppler

shifted down to a low frequency, just by a change of reference frame. But

the unlimited extrapolation of local lorentz invariance to arbitrary boost fac-

tors (and the associated in�nite density of states) must be regarded with

skepticism.

This puzzle can in one sense be sidestepped since, as indicated above, the

only role of the transplanckian ancestor was, for Hawking, to guarantee that

one has a free-fall vacuum at short distances near the horizon. This condition

on the state could also plausibly arise in a theory which looks very di�erent

from ordinary relativistic �eld theory at short distances, and in which there

are no transplanckian ancestors.
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However, this raises the question of how to account for the outgoing black

hole modes if they do not have transplanckian ancestry. Where else could

they come from? It seems that they could come from ingoing modes that

are converted into outgoing modes in the neighborhood of the horizon (see

�gure 3.5). This ridiculous sounding possibility actually occurs in simple lin-

ear �eld theories in which the wave equation is modi�ed by the addition of

higher derivative terms in the spatial directions perpendicular to some pre-

ferred local time axis [Unruh 1995, Brout et. al, 1995, Corley and Jacobson

1996, Jacobson 1996]. Similar mode conversion processes occur in many sit-

uations where linear waves with a nonlinear dispersion relation propagate in

an inhomogeneous medium. There are examples from plasma waves, galactic

spiral density waves, Andreev reection in superuid textures, sound waves,

and surface waves.

trans-
planckian
ancestors

planckian
ancestors

Figure 3.5: A Hawking pair and its ancestors. In ordinary �eld theory the an-

cestors come in from in�nity with transplanckian frequencies !

in

� exp(�t)!

out

.

In a theory with high frequency dispersion the ancestors can come in with just

planckian frequencies.

If mode conversion accounts for the origin of the outgoing black hole

modes, then the ancestors are probably planckian, but not trans-planckian,

modes. Their detailed form would depend on the physics at the planck scale

(or at a lower energy scale for new physics). However, from the analysis

of the linear models referred to above, it is clear that, for black holes that

are large compared to the new length scale, the Hawking spectrum of black
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hole radiation is remarkably insensitive to these details. For such large black

holes the most signi�cant consequence for the Hawking e�ect is for stimulated

emission. In principle, one could produce stimulated emission of Hawking ra-

diation by sending in particles in the (presumably planckian) ancestor modes

of the Hawking quanta at any time after the black hole formed, rather than

having to send in transplanckian particles before the collapse.
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3.3 Generalized second law revisited

When Bekenstein �rst proposed the GSL (2.9) he was not thinking that

A would ever decrease. The only question was whether it would necessar-

ily increase enough to compensate for entropy that falls across the horizon.

However, since a black hole emits Hawking radiation, and therefore loses

mass, the area of its horizon must shrink. This is not in contradiction with
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Hawking's area theorem, since the quantum �eld carries negative energy into

the black hole, whereas Hawking assumed a positive energy condition on

matter. It does, however, pose a potential threat to the GSL.

Hawking's calculation of the black hole temperature determined the co-

e�cient of proportionality between the black hole entropy and A=�hG to be

1=4. The GSL thus takes the form

�(S

outside

+A=4�hG) � 0: (3.31)

Here we �rst dispose of the potential threat to the GSL posed by black hole

evaporation, and then go on to discuss why the box lowering experiment de-

signed to violate the GSL fails. We then explain how energy can be extracted

from even a nonrotating, neutral black hole. Finally, some approaches to es-

tablishing the general validity of the GSL are mentioned.

3.3.1 Evaporation

The energy and entropy densities of massless thermal radiation in at space

are given by e =

1

4

aT

4

, s =

1

3

aT

3

, for some constant a. Treating the Hawking

radiation as if it were simply radiation from a large surface at temperature

T

H

, the radiated entropy and energy are related as dS =

4

3

dE=T

H

. On the

other hand, since the black hole mass changes by dM = �dE, the �rst law

tells us that the black hole entropy changes by dS

BH

= �dE=T

H

. The gen-

eralized entropy therefore increases: d(S

outside

+ S

BH

) =

1

3

dE=T

H

. Thus the

GSL is satis�ed, and the evaporation process into vacuum is an irreversible

one.

In fact the radiation is not exactly like that from a hot surface in at

space. Each mode has a di�erent absorption cross section for the hole, and

a proper treatment should take this into account. This was done in some

approximation by Zurek, with the result that the factor 4=3 is somewhat

changed but still greater than unity. It seems there should be an exact argu-

ment yielding this result, for any mode cross sections. The general arguments

for the GSL referred to below are probably adequate, although they are not

phrased in terms of the individual modes radiated and apply to much more

general situations.
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3.3.2 Box-lowering

Classically, the problem was that one could lower a box with entropy to the

horizon of a black hole, dropping it in after almost all of its energy had

been extracted at in�nity. In such a process the generalized entropy would

decrease (cf. section 2.2).

Bekenstein's proposal to evade this violation of the GSL was to suggest

that there is a universal upper bound on the entropy that can be contained

in a box of a given \size" R and energy E: S � 2�ER. Thus, since a box of

size R could not get any closer than R to the horizon, it might necessarily

still deliver enough energy to the black hole to maintain the GSL. He argued

that this is so in various thought experiments, but there were objections.

One obvious objection is that the bound seems to restrict the number of

independent species of particles that might exist in nature, since more species

lead to a greater possible entropy. It would be strange if the validity of the

GSL imposed a restriction on the number of species. Originally, Bekenstein

argued that this was the way it was. Later he argued that when the Casimir

energies are taken into account the bound holds independent of the number

of species. In the meantime, Unruh and Wald argued convincingly that no

such bound is needed to uphold the GSL.

The essential point made by Unruh and Wald is that the interaction of

the box with the quantum �elds outside the horizon cannot be neglected.

Far from the hole a static box sees the Hawking radiation, while close to the

hole it sees the Unruh radiation as a result of its acceleration. Analyzing

the process in the accelerating frame, the box experiences a buoyancy force

owing to the fact that the temperature of the Unruh radiation is higher on

the lower side of the box than on the upper side. At the point where the

energy of the displaced Unruh radiation is equal to the energy E of the box,

the buoyancy force is just great enough to oat the box. If the box is then

pushed further in it acquires more energy, so the energy delivered to the hole

is minimized by dropping the box at the oating point. When the box is

dropped into the hole the entropy change of the hole is (from the �rst law)

�S

BH

= E=T

H

. But the entropy S

box

of the box must be less than or equal

to the entropy of thermal radiation with the same volume and energy, since

thermal radiation maximizes entropy. That is, S

box

must be less than or

equal to the entropy of the displaced Unruh radiation, which has energy E

and entropy E=T

H

. Thus the S

BH

+S

outside

necessarily increases, so the GSL
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holds.

It is somewhat peculiar to base the argument on the Unruh radiation

which is not even seen by an inertial observer. Unruh and Wald point out

that the stress tensors \seen" by the two observers di�er by the conserved

stress-tensor of the Boulware vacuum. Because it is separately conserved,

this di�erence will not a�ect the result for any observable like the tension in

the rope or the total energy transferred.

In the inertial viewpoint, the reason the box oats is that as it is lowered

it maintains the vacuum in the accelerated frame, i.e. the Boulware vac-

uum, which has negative energy density relative to the surrounding Unruh

or Hartle-Hawking vacua. Evidently, as it is lowered, the box must radiate

positive energy and �ll with negative energy until at the oating point its

total energy equals zero.

3.3.3 Mining a black hole

The Unruh-Wald analysis also shows that energy can be extracted from a

black hole faster than it would naturally evaporate by Hawking radiation,

even if it is nonrotating and neutral. One can lower an open box to near the

horizon, and then close it. It will be full of Unruh radiation. Now slowly

lifting it back out to in�nity it will arrive at in�nity full of radiation with some

Killing energy E

rad

. The work done in the cycle is the energy required to lift

this radiation, i.e. the di�erence (1 � �

bot

)E

rad

, between its Killing energy

at in�nity and at the bottom. This work is less than the energy extracted,

so energy conservation implies that one has somehow extracted the energy

�

bot

E

rad

from the black hole! Since E

rad

is proportional to T

4

bot

/ �

�4

bot

T

4

H

,

the extracted energy is arbitrarily large.

1

How can one understand the mass loss by the black hole? When the box

is closed, the interior is in the local vacuum state, whose essentially zero

energy density is comprised of a negative Boulware vacuum energy density

plus a positive thermal Unruh energy density. As the box is lifted out, the

contribution of the negative Boulware energy density drops (eventually to

zero) as the acceleration drops, but the thermal Unruh contribution survives.

1

Taking into account the gravitational back-reaction Unruh and Wald estimated that

the maximum rate of energy extraction is roughly a Planck energy per Planck time, or

c

5

=G (�h drops out).
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The negative Boulware energy ows out of the box and into the black hole,

decreasing its mass.

How is this all explained from the inertial viewpoint? As the box is

lifted back up, it radiates negative energy into the black hole and �lls up

with positive energy. One way to see this is as an e�ect of radiation by

(nonuniformly) accelerating mirrors, together with the fact that the lower

face of the box experiences a greater acceleration than the upper face.

3.3.4 General arguments

Many attempts have been made to give a general argument establishing the

GSL, at least for quasistationary processes. An input for these arguments is

the assumption that ordinary second law holds, which of course is not itself

something that we know how to prove in general. Some of the arguments I

have seen are listed in the references. Almost all of them have the feature that

the acceleration radiation (Unruh radiation) is treated as bona �de thermal

radiation, the Boulware vacuum energy being ignored. This viewpoint seems

very clearly to be limited in validity to quasistationary processes, and even

then I am not sure the arguments are solid.

One argument that is rather di�erent from the rest is Sorkin's, which

refers not to the generalized entropy as de�ned by S

BH

+ S

outside

, but sim-

ply to the complete reduced density matrix for all �elds obtained by tracing

over the degrees of freedom beyond the horizon. To appreciate the relation

between this entropy and the generalized entropy requires a discussion which

is postponed until later. It should be mentioned that Sorkin claims his ar-

gument, if certain gaps could be closed, would imply the second law for his

entropy in nonstationary processes as well as quasistationary ones.
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3.4 Meaning of black hole entropy

At this stage it is clear that black holes are really thermodynamic systems

with an actual temperature and entropy. What remains to be understood

however is the meaning of this entropy in terms of statistical mechanics.

Somehow the entropy should be the logarithm of the number of independent

states of the black hole. Understanding how to count these states would

constitute a signi�cant step forward in the quest to understand quantum

gravity.

It should be said at the outset that the subject of this section lies at

the wild frontier of black hole thermodynamics. While many interesting and

presumably important facts are known, and signi�cant progress continues to

be made, there is not yet agreement on a single correct viewpoint. I shall

therefore discuss a wide range of ideas, pointing out their interconnections,

but not insisting on one uni�ed approach.

The fact that the black hole entropy is even �nite is already puzzling. A

box of radiation at �xed energy and volume has a �nite entropy because the

box imposes a long wavelength cuto� and the total energy imposes a short

wavelength cuto�. The Hilbert space describing the radiation �eld inside

the box at �xed energy is thus �nite dimensional, and the microcanonical

entropy is just the logarithm of its dimension. A black hole in a box at

�xed energy would also have a short wavelength cuto� (at the box) but, as

emphasized by 't Hooft, according to standard quantum �eld theory it has

no long wavelength cuto� (at the box). The reason is that the horizon is

an in�nite redshift surface. The wavevector of any outgoing mode diverges

at the horizon, and is redshifted down to a �nite value at the box. The

entropy of each radiation �eld around a black hole is therefore in�nite due to
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a divergence in the mode density at the horizon, so it seems the black hole

entropy must also diverge.

We shall see below that this divergence is equivalent to a divergence in

the renormalization of Newton's constant, or rather in 1=G. Thus one point

of view is that it should be absorbed by \counter terms", and only the total,

renormalized entropy is relevant. To many physicists this does not seem sat-

isfactory however, since one expects that entropy should count dimensions in

Hilbert space, which should not be subject to in�nite subtractions. A possi-

ble resolution is that some mechanism cuts o� the short wavlength modes at

the horizon, so that the entropy (and the renormalization of G

�1

) is �nite.

This subject will be pursued further below, where we discuss the various

di�erent interpretations and calculations of black hole entropy that have been

proposed. Before beginning this journey however, let us stop to consider what

kind of a cuto� mechanism is called for.

3.4.1 Holographic hypothesis

Given that the GSL seems to be true, one is led to the conclusion that A=4

(setting �hG = 1) must be the most entropy that can be contained in a region

surrounded by a surface of area A. To maximize the volume one would take

a sphere, and if there were more entropy than A=4, but no black hole, one

could simply add more mass until a black hole formed, at which point the

entropy would go down to A=4, violating the GSL. Thus the entropy must

have been less than A=4 to begin with.

't Hooft argued that the inescapable implication of this is that the true

space of quantum states in a �nite region must be �nite dimensional and

associated with the two-dimensional boundary of the region rather than the

volume. Thus it is not enough even if the system is like a fermion �eld on a

lattice of �nite spacing. Rather, the states in the region must be somehow

determined by a �nite-state system on a boundary lattice! 't Hooft made the

analogy to a hologram, and the idea was dubbed by Susskind the holographic

hypothesis.

From a classical viewpoint, the holographic hypothesis may correspond

to a statement about the phase space of a gravitating system surrounded by

a surface of area A that is not inside a black hole. It is not inconceivable

that this phase space is compact with a volume that scales as the area. If

something like this is true, then the holographic hypothesis could just be a
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straightforward consequence of quantizing a gravitating system.

On the other hand, it has been suggested by `t Hooft and Susskind that

the holographic hypothesis can only be incorporated into physics with a rad-

ical change in the foundations of the subject. If so, it provides a tantalizing

hint as to the nature of that change. There are some suggestions that string

theory might be headed in the required direction, or perhaps something very

di�erent like a cellular automaton model is correct. For the remainder of this

section I will ignore the holographic hint however, and continue to discuss

the problem from the point of view of local �eld theory.
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3.4.2 Formation degeneracy

Bekenstein's original idea was that the entropy of a black hole is the logarithm

of the number of ways it could have formed. This is closely related to the

Boltzman de�nition of entropy as the number of microstates compatible with

the macrostate.

Hawking noted that a potential problem arises if one contemplates in-

creasing the number of species of fundamental �elds. There would seem to

be more ways of forming the black hole, however the entropy is �xed at A=4.

Hawking's resolution of this was that the black hole will also radiate faster

because of the extra species, so that there would be less phase space per

species available for forming the hole. Presuming these two e�ects balance

each other, the puzzle would be resolved. This argument was further devel-

oped by Zurek and Thorne, whose analysis makes it uneccessary to presume

that the two e�ects cancel. Building up the black hole bit by bit, adding en-

ergy to the thermal \atmosphere" just outside the horizon, they argue that
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the entropy is equal to the logarithm of the number of ways of making the

black hole, independent of the number of species.

Note that to conclude that the actual value of the black hole entropy

A=4�hG is independent of the number of species, one must assume that the

value of Newton's constant is also independent of the number of species. This

is by no means clear however, since the low energy e�ectiveG is renormalized

by the vacuum uctuations of all quantum �elds. If a fundamental theory

could determine G, there is no reason to think it would come out to be

independent of the number of species.

The Zurek-Thorne interpretation sounds a lot like it is identifying the

black hole entropy with the entropy of the thermal bath seen by accelerated

observers outside the horizon. Actually, this is not the case. In fact Zurek

and Thorne say they are subtracting precisely (?) this entropy, which is

in�nite. I must confess I simply don't fully understand this argument.
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3.4.3 Thermal entropy of Unruh radiation

Another proposed interpretation is that black hole entropy actually should

be identi�ed with the entropy of the thermal bath of quantum �elds outside

the horizon. Let us assume the black hole is nonrotating for simplicity.

Recall that the quantum �eld outside the horizon is in a thermal state with

respect to the static (Boulware) vacuum. More precisely, in the Unruh state

which results from collapse this is true only for the outgoing modes, while

it is strictly true for the Hartle-Hawking state which has incoming thermal

radiation as well. Since the outgoing radiation dominates the calculation, we

use the Hartle-Hawking state for convenience.

The density matrix � for the �eld outside in the Hartle-Hawking state

jHHi can be obtained by a calculation similar to the one which yields the
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Minkowski vacuum as a thermal state, with the result

�

ext

:= Tr

int

jHHihHHj = exp(��H): (3.32)

Here � = 1=T

H

, and H is the static Hamiltonian H =

R

T

ab

�

a

d�

b

, where �

a

is the static Killing �eld, and the integral is over a spatial slice extending

from the horizon to in�nity.

The entropy associated with this thermal state can be evaluated as for

any thermal state. However, since it is in�nite, some regulator is be required.

Let us give a simple argument displaying the nature of the divergence.

2

The

total entropy of the bath is the integral of the local entropy density s over

the volume outside the black hole,

S =

Z

s 4�r

2

dl; (3.33)

where dl is the proper length increment in the radial direction and we have

assumed spherical symmetry. The local temperature T is given by T =

T

H

=� ' (�=2�)=(�l) = 1=2�l, which diverges as the horizon is approached.

Therefore it su�ces to consider massless radiation, for which s / T

3

, and

the dominant contribution (in a �nite box) will come from the region near

the horizon. Cutting o� the integral at a proper height h, we thus have

S � A

Z

h

l

�3

dl � A=h

2

: (3.34)

Because of the local divergence at the horizon, the result comes out propor-

tional to the area. It is remarkable that this simple estimate gives an area

law for the entropy. If the cuto� height is identi�ed with the Planck length,

then the entropy even has the correct order of magnitude.
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2

A similar calculation in which the entropy is evaluated using a mode sum was per-

formed by 't Hooft, who called the cuto� at height h above the horizon a \brick wall".
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3.4.4 Entanglement entropy

Another proposal is that the black hole entropy is a measure of the infor-

mation hidden in correlations between degrees of freedom on either side of

the horizon. For instance, although the full state of a quantum �eld may be

pure, the reduced density matrix �

ext

(de�ned above for the Hartle-Hawking

state) will be mixed. The associated information-theoretic entropy,

S

entanglement

= �Tr�

ext

ln �

ext

; (3.35)

should perhaps thus be part of the black hole entropy. This entropy is some-

times called entanglement entropy. (It has also been called geometric en-

tropy.)

If the formal calculation establishing (3.30) can be trusted, we know that

S

entanglement

is identical to the thermal entropy of the quantum �eld outside

the horizon as de�ned above. In particular, it will diverge in the same way.

Instead of thinking of this as an in�nite temperature divergence, we can think

of it as due to the correlations between the in�nite number of short wave-

length degrees of freedom on either side of the horizon. These correlations

are evident from the form of the state near the horizon when expressed in

terms of excitations above the inside and outside static vacua (cf. section

3.1.4).
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3.4.5 Species problem

Besides the divergence, which might be cut o� in some way, there is another

problem with the idea that the thermal or entanglement entropies of quantum
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�elds be identi�ed with black hole entropy. Namely, this entropy depends

on the number of di�erent �elds in nature, whereas the black hole entropy is

universal, always equal to A=4�hG.

Various resolutions to the species problem have been suggested. The

most natural one to my mind is that the renormalized Newton constant,

which appears in the Bekenstein-Hawking entropy A=4�hG, depends on the

number of species in just the right way to absorb all species dependence

of the black hole entropy. To understand this point, we must include the

gravitational degrees of freedom in our description, which we do in the next

subsection.

It should be remarked that the formal nature of the argument used to

establish the equality �

ext

= exp(��H) left us on somewhat shaky ground.

It may be that entanglement and thermal entropies are not exactly the same.

This issue is somewhat superseded by the considerations of the next subsec-

tion, in which the coupling of the matter and gravitational degrees of freedom

is allowed for.
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3.4.6 Quantum gravitational statistical mechanics

Shortly after the Hawking e�ect was discovered, Gibbons and Hawking pro-

posed a formulation of quantum gravitational statistical mechanics that en-

abled them to compute the black hole entropy, and they got the right answer.

Their approach was nevertheless not generally regarded as the �nal word, for

several reasons to be discussed below, which is why people pursued the ques-

tion in the ways already described above. In fact, Gibbons and Hawking even

noted that their approach contains the thermal entropy of quantum �elds as

a one-loop quantum correction. However, they did not point out that this

correction is dominated by a divergent term proportional to the area of the

event horizon, which is the feature that has attracted so much attention by

later workers in the hopes that, by itself, this might explain the proportion-

ality of black hole entropy and area without needing to get into the obscure
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issue of the quantum gravitational Hilbert space.

The Gibbons-Hawking approach will now be described. The basic idea

is to imitate standard methods of handling thermodynamic ensembles in

other branches of physics. Thus, the goal is to compute the partition func-

tion Z = Tr exp(��H) for the system of gravitational and matter �elds in

thermal equilibrium at temperature T , from which the entropy and other

thermodynamic functions can be evaluated. In fact it is better in principle

to consider the microcanonical ensemble rather than the canonical one. This

is because the canonical ensemble is unstable for a gravitating system. If a

black hole is in a large heat bath at the Hawking temperature, a small uc-

tuation to larger mass will cause its temperature to drop, which leads to a

runaway growth of the hole. Conversely, a small uctuation to smaller mass

will lead to a runaway evaporation of the hole.

This instability can be controlled by putting the black hole in a very small

container, with radius less than 3=2 times the Schwarzschild radius (for a

Schwarzschild black hole), and somehow holding the temperature at the box

�xed. The reason this eliminates the instability is interesting: although a

uctuation to (say) larger mass causes the Hawking temperature to drop,

this is more than compensated by the fact that the horizon has moved out,

so the local temperature at the box is less redshifted than before, so the hole

is in fact locally hotter than the box. Alternatively one can work with the

more physical microcanonical ensemble, in which the total energy is �xed.

In the following we shall for simplicity gloss over these re�nements in the

nature of the ensemble, unless explicit mention is called for.

To actually compute Z would seem to require an understanding the

Hilbert space of quantum gravity, something which we still lack. Gibbons and

Hawking sidestepped this di�culty by passing to a path integral representa-

tion for Z whose semiclassical approximation could be plausibly evaluated.

Thus, one writes

Z = Tr exp(��H) =

Z

DgD�e

�I[g;�]

(3.36)

where g and � stand for the metric and matter �elds respectively and I is

the Euclidean action. The stationary point of the action is the Euclidean

black hole, with mass determined by the condition that there be no conical

singularity in the r-t plane at the Euclidean horizon. The Euclidean Rindler

coordinates are just polar coordinates, ds

2

= �

2

d�

2

+ d�

2

, so this means the
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period of the \angular" coordinate � must be 2�. Since � = �t (cf. section

3.2.3), it follows that � = 1=4M must be 2�=�, or M = �=8�. The zeroth

order contribution to the entropy is then obtained as

S

0

= (�

@

@�

� 1)I[g

0

; �

0

]; (3.37)

where (g

0

; �

0

) is the classical stationary point.

To include quantum uctuations one could write g = g

0

+~g and � = �

0

+

~

�,

and integrate over ~g to obtain an e�ective action I

e�

[g

0

; �

0

] = � lnZ. This

e�ective action will contain a Ricci scalar term with a coe�cient 1=16�G

ren

,

where G

ren

is the renormalized Newton constant, as well as higher curva-

ture terms, non-local terms etc. The contribution of the uctuations to the

entropy is primarily through their e�ect on the renormalization of G.

Viewed in a di�erent way, the uctuation contribution can be related to

the thermal entropy of acceleration radiation or the (formally equivalent)

entanglement entropy discussed earlier. The path integral over ~g and

~

� for-

mally gives Tr exp(��H

0

[~g;

~

�]), where H

0

is the evolution operator for the

uctuations in the background (g

0

(�); �

0

(�)). Thus, the contribution S

0

of

the uctuations to the entropy

S = S

0

+ S

0

= (�

@

@�

� 1)I

e�

[g

0

; �

0

] (3.38)

looks at �rst just like the entanglement entropy S

tangle

.

However, in computing the entanglement entropy only the period � of

the background is varied, while otherwise the background is �xed. By con-

trast, in computing S as above, one also must di�erentiate with respect to

the �-dependence of the background (g

0

(�); �

0

(�)) [Frolov, 1995]. Formally,

this extra variation makes no contribution, since (g

0

; �

0

) is chosen to be a

stationary point of the e�ective action. Thus the two computations might

yield the same result. However, the calculation in which only the period is

varied introduces a conical singularity at the horizon, and this can lead to

some di�erence. For some types of �elds and couplings (e.g. free, minimally

coupled scalar and spin-1/2 �elds) it has been shown that there is no di�er-

ence, and in some cases (e.g. free vector �eld) there is a di�erence [Kabat,

1995]. It seems that the full partition function approach must be the correct

one in principle.
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Appendix A

General Relativity in a nutshell

A.1 Newtonian gravity

Because of the equivalence of inertial and (passive) gravitational mass, New-

ton's equation for the acceleration of a test particle in a gravitational poten-

tial ' reads

a

i

= �'

;i

;

where \; i" denotes partial derivative w.r.t. x

i

. All particles fall with the

same acceleration, so the accelerating e�ects of gravity can be locally elimi-

nated by going to a freely falling reference frame, but only to the extent that

the gradient of the gravitational �eld can be neglected. The true gravita-

tional �eld is thus the Newtonian tidal tensor �eld,

N

�

i

j

:= �'

;ij

. Newton's

equation for the gravitational �eld states that r

2

' = 4�G�, i.e. the trace of

the tidal tensor is determined by the mass density �:

N

�

i

i

= �4�G�:

A.2 Spacetime

In special relativity the proper time and space intervals are described by the

Minkowski line element,

ds

2

= dt

2

� dx

2

� dy

2

� dz

2

;
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given here in units where c = 1. The idea of general relativity is that, in

accord with the equivalence of inertial and gravitational mass, one can always

choose coordinates at any point in spacetime so that the line element takes

the above form, and one can even arrange to have all the �rst derivatives

of the coe�cients in the line element vanish at a given point, but in the

presence of a gravitational tidal �eld the second derivatives can not be made

to vanish, even at a point, indicating curvature. The general line element is

written:

ds

2

= g

��

dx

�

x

�

;

with �; � = 0; 1; 2; 3 and summation over repeated � and � indices under-

stood.

A.3 Geodesic equation

The path of a test particle not acted upon by any forces is a geodesic. A

geodesic path x

�

(�) is a stationary point of an action:

S =

Z

1

2

g

��

_x

�

_x

�

d�;

where _x

�

:= dx

�

=d�. The Euler-Lagrange equations are the geodesic equa-

tion:

d

d�

(g

��

_x

�

)�

1

2

g

��;�

_x

�

_x

�

= 0:

Note that in a coordinate system for which g

��;�

(p) = 0 at a particular

point p, the geodesic equation merely states that the coordinate acceleration

�x

�

vanishes, just as it would for a free particle in the absence of gravity.

The parameter � can be linearly rescaled � ! a�+ b without changing the

above form of the geodesic equation. This class of parameters is called a�ne

parameters for the geodesic. For a timelike or spacelike geodesic the a�ne

parameter can always be chosen to coincide with the proper time or proper

length along the curve.

A.4 Curvature and Einstein equation

The geodesics are the locally straight lines, and if these lines have relative

acceleration, then the spacetime is geometrically curved. This relative ac-
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celeration, or \curvature", corresponds to the presence of gravitational tidal

forces. The geodesic deviation equation characterizes the relative accelera-

tion of in�nitesimally separated geodesics in terms of the second covariant

derivative of the connecting vector C

�

:

D

2

d�

2

C

�

=

E

�

�

�

C

�

;

where the Einstein tidal tensor

E

�

�

�

is certain components of the Riemann

curvature tensor:

E

�

�

�

:= �R

�

���

_x

�

_x

�

:

Einstein's vacuum �eld equation follows from the assumption that the New-

tonian equation hold for all geodesics, which implies that

E

�

�

�

= 0 for all _x

�

,

which implies that The Ricci tensor R

��

:= R

�

���

vanishes. In the presence

of matter, Newton's equation implies

E

�

�

�

= �4�G�

E

, where �

E

should be

some relativistic scalar quantity that agrees in Newtonian situations with the

mass density. The simplest possibility is to try �

E

= (aT

��

+(1�a)Tg

��

) _x

�

_x

�

,

where T

��

is the stress-energy tensor and T = T

��

g

��

is its trace. The con-

tracted Bianchi identity (R

��

�

1

2

Rg

��

)

;�

= 0 (where \;" denotes covariant

derivative) is then consistent with the local conservation of energy and mo-

mentum T

��

;�

only if one chooses a = 2, yielding the �eld equation

R

��

= 8�G(T

��

�

1

2

Tg

��

);

or equivalently,

R

��

�

1

2

Rg

��

= 8�GT

��

:

A.5 Symmetries and conservation laws

If the metric components in some coordinate system are independent of a

particular coordinate x

�̂

then the metric has a symmetry under translations

by this coordinate holding the remaining coordinates �xed. The vector �eld

�

�

= (@=@x

�̂

)

�

that generates the symmetry is called a Killing vector. In the

original coordinates the components of the Killing vector are simply �

�

= �

�

�̂

.

A coordinate-covariant characterization of a Killing vector is �

(�;�)

= 0,
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Each symmetry implies a conservation law. If the metric and therefore

the geodesic action is independent of the coordinate x

�̂

then the conjugate

momentum for a particle is conserved: p

�̂

= g

��̂

_x

�

= const. In terms of

the vector �eld �

�

that generates the symmetry the conserved quantity is

the inner product _x

�

�

�

:= g

��

_x

�

�

�

. For �elds or distributed matter, the

energy-momentum tensor describes the current density of energy-momentum

four-vector. Local conservation of energy-momentum (i.e. neglecting gravi-

tational tidal e�ects) is expressed by T

��

;�

= 0, and is implied by the Einstein

equation. In the presence of a Killing vector there is an associated conserved

current, T

��

�

�

, the current of the �-component of the energy-momentum

four-vector.
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