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0 Preface

These are notes for part of a course on advanced quantum mechanics given to 4th

year physics students. The only prerequisites, however, are a basic knowledge of the

Schrödinger and Heisenberg pictures of standard quantum mechanics (as well as the will-

ingness to occasionally and momentarily suspend disbelief). Thus the material could

easily be presented at an earlier stage. I covered the material in five 3-“hour” lec-

tures (1 “hour” = 45 minutes) and this time constraint (there are other topics that I

wanted to cover as well in the course) dictated the level of detail (or lack thereof) of

the presentation.

One of the aims of these lectures was to set the stage for a future course on quantum field

theory. To a certain extent this motivated the choice of topics covered in these notes

(e.g. generating functionals are discussed, while concrete applications of path integrals

to non-trivial quantum mechanics problems are not).

These notes do not include an introductory section on motivations, history, etc. - such

things are best done orally anyway. My own point of view is that the path integral

approach to quantum theories is simultaneously more intuitive, more fundamental, and

more flexible than the standard operator - state description, but I do not intend to get

into an argument about this. Objectively, the strongest points in favour of the path

integral appoach are that

• unlike the usual Hamiltonian approach the path integral approach provides a man-

ifestly Lorentz covariant quantisation of classical Lorentz invariant field theories;

• it is perfectly adapted to perturbative expansions and the derivation of the Feyn-

man rules of a quantum field theory;

• it allows in a rather straightforward manner to calculate certain non-perturbative

contributions (i.e. effects that cannot be seen to any order in perturbation theory)

to S-matrix elements.

The motivation for writing these notes was that I found the typical treatment of quantum

mechanics path integrals in a quantum field theory text to be too brief to be digestible

(there are some exceptions), while monographs on path integrals are usually far too

detailed to allow one to get anywhere in a reasonable amount of time.

I have not provided any referenes to either the original or secondary literature since

most of the material covered in these notes is completely standard and can be found in

many places (the exception perhaps being the Gelfand-Yaglom formula for fluctuation
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determinants for which some references to the secondary literature are given in section

3.5).

No attempt at mathematical rigour (not even the pretense of an attempt) is made in

these notes.

Updated corrected or expanded versions of these notes will be available at

http://www.blau.itp.unibe.ch/Lecturenotes.html

If you find any mistakes, or if you have any other comments on these notes, complaints,

(constructive) criticism, or also if you just happen to find them useful, please let me

know.
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1 The Evolution Kernel

1.1 Review: The time-evolution Operator

The dynamical information about quantum mechanics is contained in the matrix ele-

ments of the time-evolution operator U(tf , ti). For a time-independent Hamiltonian Ĥ

one has

U(tf , ti) = e−(i/~)(tf − ti)Ĥ (1.1)

whereas the general expression for a time-dependent Hamiltonian involves the time-

ordered exponential

U(tf , ti) = T
(

e
−(i/~)

∫ tf
ti
dt′Ĥ(t′)

)

. (1.2)

It satisfies the evolution equation

i~
∂

∂tf
U(tf , ti) = Ĥ(tf )U(tf , ti) , (1.3)

with initial condition

U(tf = ti, ti) = I . (1.4)

As a consequence,

Ψ(tf ) = U(tf , ti)ψ(ti) (1.5)

satisfies the time-dependent Schrödinger equation

i~
∂

∂tf
Ψ(tf ) = Ĥ(tf )Ψ(tf ) (1.6)

with initial condition

Ψ(ti) = ψ(ti) . (1.7)

Another key-property of the time-evolution operator is

U(tf , ti) = U(tf , t)U(t, ti) ti < t < tf . (1.8)

In words: evolution from time ti to tf is the same as evolving from ti to t, followed by

evolution from t to tf .

1.2 Definition of the Propagator / Kernel

Our main interest will be in matrix elements of U in the position representation. We

will denote these by (the letter K stands for “kernel”)

K(xf , xi; tf − ti) =< xf |U(tf , ti)|xi > . (1.9)
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This can also be interpreted as the transition amplitude

K(xf , xi; tf − ti) =< xf , tf |xi, ti > , (1.10)

where (in the time-independent case)

|xi, ti >= e(i/~)tiĤ |xi > (1.11)

etc. Note that this is not the Schrödinger time-evolution of the state |xi > - this would

have the opposite sign in the exponent (this is related to the fact that U(tf , ti) satisfies

the Schrödinger equation with respect to tf , not ti). Rather, this state is characterised

by the fact that it is the eigenstate of the Heisenberg picture operator x̂H(t) at t = ti,

x̂H(t)|x, t >= e(i/~)tĤ x̂e−(i/~)tĤ e (i/~)tĤ |x >= x|x, t > . (1.12)

Another way of saying this, or introducing the states |x, t >, is the following: In general

the operators x̂H(t) and x̂H(t′) do not commute for t 6= t′. Hence they cannot be

simultaneously diagonalised. For any given t, however, one can choose a basis in which

x̂H(t) is diagonal. This is the basis {|x, t >}.

Matrix elements of the evolution operator between other states, say the transition am-

plitude between an initial state |ψi > and a final state |ψf >, are determined by the

kernel through

< ψf |U(tf , ti)|ψi > =

∫

dxf

∫

dxi < ψf |xf >< xf |U(tf , ti)|xi >< xi|ψi >

=

∫

dxf

∫

dxi ψ
∗
f (xf )ψi(xi)K(xf , xi; tf − ti) . (1.13)

1.3 Basic Properties of the Kernel

Here are some of the basic properties of the Kernel:

1. With properly normalised position eigenstates, one has

lim
tf→ti

< xf , tf |xi, ti >=< xf |xi >= δ(xf − xi) . (1.14)

2. The kernel satisfies the Schrödinger equation with respect to (tf , xf ), i.e.

[i~∂tf − Ĥ(xf , pf = (~/i)∂xf
, tf )] < xf , tf |xi, ti >= 0 . (1.15)

More generally, for any ket |φ > the wave function

Ψφ(x, t) =< x, t|φ > (1.16)
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is a solution of the Schrödinger equation, with

Ψφ(x, t) =

∫

dxi < x, t|xi, ti >< xi, ti|φ >

=

∫

dxiK(x, xi, t− ti)Ψφ(xi, ti) . (1.17)

3. Since we can restrict our attention to evolution forwards in time, one frequently

also considers the causal propagator or retarded propagator

Kr(xf , xi; tf − ti) = Θ(tf − ti)K(xf , xi; tf − ti) (1.18)

where Θ is the Heavyside step function, Θ(x) = 1 for x > 0 and Θ(x) = 0 for

x < 0. It follows from the above two properties of the kernel, and Θ′(x) = δ(x),

that the retarded propagator satisfies

[i~∂tf−Ĥ(xf , pf = (~/i)∂xf
, tf )]Kr(xf , xi; tf−ti) = i~δ(tf−ti)δ(xf−xi) . (1.19)

Thus the retarded propagator is a Green’s function for the Schrödinger equation.

4. A key property of the kernel is the convolution property

K(xf , xi; tf − ti) =

∫ +∞

−∞

dx K(xf , x; tf − t)K(x, xi; t− ti) (1.20)

(for t arbitrary subject to the condition tf > t > ti). This follows from the

property (1.8) of the time-evolution operator by inserting a complete state of

states in the form

I =

∫ ∞

−∞

dx |x >< x| . (1.21)

One then finds

< xf , tf |xi, ti > = < xf |U(tf , t)U(t, ti)|xi >

=

∫ ∞

−∞

dx < xf |U(tf , t)|x >< x|U(t, ti)|xi >

=

∫ ∞

−∞

dx < xf , tf |x, t >< x, t|xi, ti > , (1.22)

which is the claimed result.

5. Finally, we can also expand the kernel in terms of energy eigenstates

ψn(x) =< x|n > (1.23)

as

K(xf , xi; tf − ti) = < xf |e−(i/~)(tf − ti)Ĥ |xi >

=
∑

n

< xf |e−(i/~)(tf − ti)Ĥ |n >< n|xi >

=
∑

n

e−(i/~)(tf − ti)Enψn(xf )ψ
∗
n(xi) . (1.24)
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1.4 Example: The Free Particle

For the free particle, with Hamiltonian H = p2/2m, it is straightforward to determine

the kernelK = K0 and verify explicitly all the above properties. By inserting a complete

set of momentum eigenstates |p >,

< x|p >= 1√
2π~

e (i/~)px (1.25)

(i.e. by Fourier transform), one finds

K0(xf , xi; tf − ti) = < xf |e−(i/~)(tf − ti)p̂
2/2m|xi >

=

∫ +∞

−∞

dp < xf |p > e−(i/~)(tf − ti)p
2/2m < p|xi >

=
1

2π~

∫ +∞

−∞

dp e (i/~)[p(xf − xi)− (tf − ti)p
2/2m] . (1.26)

Using the Fresnel integral formulae from Appendix A, one thus finds

K0(xf , xi; tf − ti) =

√

m

2πi~(tf − ti)
e

i
~

m
2

(xf−xi)2

(tf−ti) (1.27)

Note that the exponent has the interpretation as the “classical action”, i.e. as the action

S0 of the free particle evaluated on the classical path xc(t) satisfying the free equations

of motion and the boundary conditions xc(tf,i) = xf,i,

S0[xc] =
m

2

(xf − xi)
2

(tf − ti)
. (1.28)

This at this stage rather mysterious fact has a very natural explanation from the path

integral point of view.

1.5 Exercises

1. Verify the results (1.27) and (1.28) for the evolution kernel of the free particle.

2. Verify that (1.27) is normalised as in (1.14), and satisfies the convolution property

(1.20) and the free particle Schrödinger equation (1.15).

3. Prove the basic integral identity (A.31),

∫ +∞

−∞

ddx e−Aabx
axb/2 =

(

det
A

2π

)−1/2

. (1.29)
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for Gaussian integrals (Aab is a real symmetric positive matrix), and calculate the

integral
∫ +∞

−∞

ddx e−Aabx
axb/2 + Jax

a
(1.30)

by completing the square (remember that Aab is invertible).
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2 Towards the Path Integral Representation of the Kernel

2.1 From the Kernel to the Short-Time Kernel and Back

In general, it is a difficult (if not impossible) task to find a closed form expression for the

kernel. However, the convolution property allows us to reduce the determination of the

finite-time kernel to that of the short-time (or even infinitesimal time) kernel K(x, y; ǫ)

and, as we will see later on, this allows us to make some progress.

First of all we note that we can write (once again in the time-independent case, but the

argument works in general)

< xf |e−(i/~)(tf − ti)Ĥ |xi >=< xf |
(

e−(i/~)
(tf−ti)

N Ĥ
)N

|xi > . (2.1)

We think of this as dividing the time-interval [ti, tf ] into N equal time-intervals [tk, tk+1]

of length ǫ,

ǫ = tk+1 − tk = (tf − ti)/N . (2.2)

Here k = 0, . . . , N − 1 and we identify tf = tN and ti = t0. We can now insert N − 1

resolutions of unity at times tk, k = 1, . . . , N−1 into the above expression for the kernel

to find

K(xf , xi; tf − ti) = [

N−1
∏

k=1

∫ ∞

−∞

dxk][

N−1
∏

k=0

K(xk+1, xk; ǫ = tk+1 − tk)] , (2.3)

where xf = xN and xi = x0.

Now this expression holds for any N . But for finite N , the kernel is still difficult to

calculate. As we will see below, things simplify in the limit ǫ→ 0, equivalently N → ∞.

In this limit, the kernel

K(xf , xi; tf − ti) = lim
N→∞

[
N−1
∏

k=1

∫ ∞

−∞

dxk][
N−1
∏

k=0

K(xk+1, xk; ǫ = (tf − ti)/N)] (2.4)

is determined by the short-time kernel K(xk+1, xk; ǫ) as ǫ→ 0.

2.2 The Trotter Product Formula and the Dirac Short-Time Kernel

Formally, it is not difficult to see that in the limit N → ∞ we only need to know

this short-time kernel K(xk+1, xk; ǫ) to order ǫ. If everything in sight were commuting

(instead of operators), the argument for this would be the following: one writes

ex =
(

ex/N
)N

= (1 + x/N +O(1/N2))N (2.5)
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and compares with the formula

ex = lim
N→∞

(1 + x/N)N (2.6)

to conclude that in the limit N → ∞ the subleading O(N−2) terms in (2.5) can indeed

be dropped.1 Of course, to establish an analogous result for (unbounded) operators

requires some functional analysis.

We will now assume that the Hamiltonian is of the standard form

H = T (p) + V (x) =
p2

2m
+ V (x) . (2.7)

We are thus interested in determining the kernel

K(xk+1, xk; ǫ) =< xk+1|e−(i/~)ǫ(T̂ + V̂ )|xk > . (2.8)

Provided that we can justify dropping terms of O(ǫ2), things simplify quite a bit. Indeed,

even though T̂ and V̂ are non-commuting operators, ǫT̂ and ǫV̂ commute up to order

ǫ2, because their commutator is ǫ2[T̂ , V̂ ]. Thus, using the Baker-Campbell-Hausdorff

formula one has

e−(i/~)ǫ(T̂ + V̂ ) = e−(i/~)ǫT̂ e−(i/~)ǫV̂ +O(ǫ2) . (2.9)

To justify dropping these O(ǫ2) commutator terms, however, one needs some control

over the operator [T̂ , V̂ ] which should not become too singular.

Concretely, what one needs is the validity of the Trotter product formula

e Â+ B̂ =

(

e Â/N + B̂/N
)N

?
= lim

N→∞

(

e Â/N e B̂/N
)N

(2.10)

for Â = T̂ and B̂ = V̂ .

This identity is not difficult to prove for bounded operators. The case of interest,

unbounded operators, is trickier. The identity holds, for instance, on the common

domain of A and B, provided that both are self-adjoint operators that are bounded

from below. Once again, we will gloss over these functional analysis complications and

proceed with the assumption that it is legitimate to drop the commutator terms (while

keeping in mind that this assumption is not valid e.g. for the Coulomb potential!).

1The identity (2.6) can be proved directly, e.g. via a binomial expansion or by showing that

d

dx
lim

N→∞

(1 + x/N)N = lim
N→∞

(1 + x/N)N

.
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With the above assumptions, to order ǫ we can write the short-time kernel as

K(xk+1, xk; ǫ) =< xk+1|e−(i/~)ǫT̂ e−(i/~)ǫV̂ |xk > . (2.11)

To diagonalise the operator T̂ we introduce a complete set of momentum eigenstates

|pk > with

< x|pk >=
1√
2π~

e (i/~)pkx (2.12)

and calculate

K(xk+1, xk; ǫ) =

∫ +∞

−∞

dpk < xk+1|e−(i/~)ǫT̂ |pk >< pk|e−(i/~)ǫV̂ |xk >

=

∫ +∞

−∞

dpk < xk+1|pk >< pk|xk > e−(i/~)ǫ(
p2
k

2m + V (xk))

=
1

2π~

∫ +∞

−∞

dpk e (i/~)ǫ[pk
(xk+1−xk)

ǫ −H(pk, xk)] (2.13)

This is a lovely result, first obtained by Dirac in 1933. In the exponential, where we once

had operators, we now encounter the Legendre transform of the classical Hamiltonian,

i.e. the Lagrangian! Indeed, if we identify

xk+1 − xk
ǫ

=
xk+1 − xk
tk+1 − tk

→ dxk
dt

, (2.14)

as a discretised time-derivative, the exponent takes the classical form pkẋk −H(pk, xk).

We can implement the Legendre transformation explicitly by performing the Gaussian

(Fresnel) integral over pk (see Appendix A) to find

K(xk+1, xk; ǫ) =
1

2π~

∫ +∞

−∞

dpk e (i/~)[pk(xk+1 − xk)− ǫ(
p2
k

2m + V (xk))]

=

√

m

2πi~ǫ
e (i/~)ǫL(xk, ẋk) (2.15)

where the Lagrangian L is

L(xk, ẋk) =
m(xk+1 − xk)

2

2ǫ2
− V (xk) →

mẋ2k
2

− V (xk) . (2.16)

2.3 The Path Integral Representation of the Kernel

Having obtained the above explicit formula for the short-time kernel in terms of the

Lagrangian, we can no go back to (2.4) to obtain an expression for the finite-time

kernel. We can use either the phase space expression (2.13) or the configuration space

expression (2.15). This iteration of Dirac’s result is due to Feynman (1942).
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In this way we arrive at

K(xf , xi; tf − ti) = lim
N→∞

[

N−1
∏

k=1

∫ ∞

−∞

dxk][

N−1
∏

k=0

∫ ∞

−∞

dpk
2π~

]e (i/~)ǫ
∑N−1

k=0 [pk
xk+1−xk

ǫ −H(pk, xk)]

= lim
N→∞

( m

2πi~ǫ

)N/2
[

N−1
∏

k=1

∫ ∞

−∞

dxk]e
(i/~)ǫ

∑N−1
k=0 L(xk, ẋk) (2.17)

Note that in the phase space representation of the kernel there is always one more

momentum than position integral. This is a consequence of the fact that each short-

time propagator contains one momentum integral whereas the position integrals are

inserted between the short-time propagators and the two end-points xi and xf are not

integrated over.

In the ǫ→ 0 or N → ∞ limit, we interpret the points xk as defining a continuous (but

almost certainly nowhere differentiable - see below) curve, any two successive points

being joined by a straight line. That is, we think of them as defining a curve x(t) with

endpoints

x(ti) = xi x(tf ) = xf (2.18)

and

xk = x(ti + kǫ) . (2.19)

Likewise, we think of the pk as definig a curve p(t) in momentum space such that

p0 = p(ti) pk = p(ti + kǫ) . (2.20)

With this interpretation the exponents in the integrand of the kernel can be written as

lim
N→∞

ǫ

N−1
∑

k=0

[pk
xk+1 − xk

ǫ
−H(pk, xk)] =

∫ tf

ti

dt [p(t)ẋ(t)−H(p(t), x(t))]

lim
N→∞

ǫ

N−1
∑

k=0

L(xk, ẋk) =

∫ tf

ti

dt L(x(t), ẋ(t)) = S[x(t); tf , ti] (2.21)

In the same spirit, we formally now write the integrals as integrals over paths, intro-

ducing the notation

lim
N→∞

[
N−1
∏

k=1

∫ ∞

−∞

dxk] =

∫ x(tf )=xf

x(ti)=xi

D[x(t)]

lim
N→∞

[

N−1
∏

k=0

∫ ∞

−∞

dpk
2π~

] =

∫

D[p(t)/2π~] . (2.22)
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With this notation, we can now write the kernel as a path integral ,

K(xf , xi; tf − ti) =

∫ x(tf )=xf

x(ti)=xi

D[x(t)]

∫

D[p(t)/2π~]e
(i/~)

∫ tf
ti
dt [p(t)ẋ(t)−H(p(t), x(t))]

= N
∫ x(tf )=xf

x(ti)=xi

D[x(t)]e (i/~)S[x(t)] . (2.23)

This is an integral over all paths x(t) with the specified boundary conditions and, in

the first version, all paths p(t) with t ∈ [ti, tf ].

Some remarks:

1. The first line, a phase space path integral, is valid for general Hamiltonians

H(p, x) = T (p) + V (x) (possibly time-dependent). The measure appears to be

an infinite-dimensional analogue of the canonical Liouville measure. The latter

is of course invariant under canonical transformations. This should however not

lead one to believe that the path integral representation of the kernel also enjoys

this invariance. Indeed, this cannot possibly be true since it is well known that

under a canonical transformation any Hamiltonian can be mapped to zero (the

Hamilton-Jacobi transformation) and hence into any other Hamiltonian, while the

kernel depends non-trivially on the Hamiltonian.

2. To pass to the second line, a configuration space path integral, we used the explicit

quadratic form T = p2/2m to perform the Gaussian integral over p. The derivation

of the path integral for a Hamiltonian with a velocity dependent potential, such

as the magnetic interaction (p − A)2/2m, is more subtle (the discretised version

requires a “mid-point rule” for the Hamiltonian) and will not be discussed here.2

3. As mentioned above, as limits of piecewise linear continuous paths these paths are

continuous but not differentiable. Indeed differentiability would require existence

of a finite limit of (xk+1 − xk)/ǫ as ǫ → 0. But xk+1 and xk are independent

variables, and hence there is no reason for the difference xk+1 − xk to go to zero

as ǫ→ 0. Hence the paths entering the above sum/integral are typically nowhere

differentiable. Evidently, then, things like ẋ(t) require some (perhaps stochastic

or probabilistic) interpretation, but we will not open this Pandora’s box.

4. Finally, N is formally an infinite normalisation constant,

N = lim
N→∞

(

mN

2πi~(tf − ti)

)N/2

(2.24)

2See the discussion in B. Gaveau et al., Path integral in a magnetic field using the Trotter product

formula, quant-ph/0403019.
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(we have replaced ǫ by (tf − ti)/N) whose sole purpose in life is to make the

combined expression N times the integral well defined, finite and equal to the left

hand side (provided that all our functional analysis assumptions are satisfied).

We could have absorbed much of the prefactor into the definition of the measure by

writing (2.17) as

K(xf , xi; tf − ti) =
( m

2πi~ǫ

)1/2
lim

N→∞
[

N−1
∏

k=1

∫ ∞

−∞

( m

2πi~ǫ

)1/2
dxk]e

(i/~)ǫ
∑N−1

k=0 L(xk, ẋk)

(2.25)

and defining

∫ x(tf )=xf

x(ti)=xi

D̃[x(t)] = lim
N→∞

[
N−1
∏

k=1

∫ ∞

−∞

( m

2πi~ǫ

)1/2
dxk] . (2.26)

Then the kernel is

K(xf , xi; tf − ti) =
( m

2πi~ǫ

)1/2
∫ x(tf )=xf

x(ti)=xi

D̃[x(t)]e (i/~)S[x(t)] . (2.27)

Another useful normalisation of the measure is, as we will see in section 3, such that

N
∫ x(tf )=xf

x(ti)=xi

D[x(t)]e (i/~)S[x(t)] =

√

m

2πi~(tf − ti)

∫ x(tf )=xf

x(ti)=xi

D̂[x(t)]e (i/~)S[x(t)] .

(2.28)

We will obtain a more informative expresion for N , and hence the relation between D[x]

and D̂[x], involving the determinant of a differential operator, in the next section.

2.4 The Path Integral Representation of the Partition Function

In analogy with the quantum statistical (or thermal) partition function

Z(β) = Tr e−βĤ (2.29)

one defines the quantum mechanical partition function, or the partition function for

short, as the trace of the time evolution operator,

Z(tf , ti) = TrU(tf , ti) . (2.30)

In the time-independent case, this becomes

Z(tf , ti) = Z(tf − ti) = Tr e−(i/~)(tf − ti)Ĥ , (2.31)
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and thus the quantum mechanical and thermal partition function are formally related

by continuation of the time interval (tf − ti) to the imaginary value

tf − ti = −i~β . (2.32)

Evaluating the trace in a basis of energy eingenstates |n >, one finds

Z(tf − ti) =
∑

n

e−(i/~)(tf − ti)En . (2.33)

On the other hand, evaluting the trace in a basis of position eigenstates |x >, one

obtains

Z(tf , ti) =

∫ +∞

−∞

dx < x|U(tf , ti)|x >=
∫ +∞

−∞

dx K(x, x; tf − ti) . (2.34)

This means that in the discretised expression (2.17) for the kernel there are now an

equal number of momentum and position integrals. In the continuum version (2.23),

setting xf = xi = x means that one is integrating not over all paths but over all closed

paths (loops) at x, and the integration over x means that one is integrating over all

closed loops,

Z(tf , ti) = N
∫ +∞

−∞

dx

∫ x(tf )=x

x(ti)=x
D[x(t)]e (i/~)S[x(t)]

= N
∫

x(tf )=x(ti)
D[x(t)]e (i/~)S[x(t)] . (2.35)

Since we now have an equal number of x- and p-integrals, in terms of the measure D̃[x]

(2.26) the partition function reads

Z(tf , ti) =

∫

x(tf )=x(ti)
D̃[x(t)]e (i/~)S[x(t)] . (2.36)

Comparison with (2.33) shows that, if we are able to calculate this path integral over

all closed loops we should (in the time-independent case only, of course) be able to read

off the energy spectrum.

The relation between statistical mechanics and quantum mechanics at imaginary time

is rather deep. In particular, for quantum field theory this implies a relation between

finite temperature quantum field theory in Minkowski space and quantum field theory in

Euclidean space with one compact (Euclidean “time”) direction. This has far-reaching

consequences (none of which will be explored here).
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2.5 Classical Mechanics “inside” the Path Integral

Since inside the path integral one is dealing with classical functions and functionals

rather than with operators, fairly simple “classical” manipulations of the path integral

can lead to non-trivial quantum mechanical identities.

As an example, consider the “trivial” statement that the path integral is invariant under

an overall shift

x(t) → x(t) + y(t) y(ti) = y(tf ) = 0 (2.37)

of the integration variable,

∫ x(tf )=xf

x(ti)=xi

D[x(t)] e (i/~)S[x(t)] =

∫ x(tf )=xf

x(ti)=xi

D[x(t)] e (i/~)S[x(t) + y(t)] (2.38)

which follows from the (presumed) translation invariance of the measure.

Infinitesimally, with y(t) = δx(t) and

S[x(t) + δx(t)] = S[x(t)] + δS[x(t)] , (2.39)

this statement reduces to

∫ x(tf )=xf

x(ti)=xi

D[x(t)] δS[x(t)] e (i/~)S[x(t)] = 0 . (2.40)

Sometimes this statement is paraphrased as “the path integral of a total derivative is

zero”,
∫ x(tf )=xf

x(ti)=xi

D[x(t)]
δ

δx(t)
e (i/~)S[x(t)] = 0 . (2.41)

Consequences derived from such identities are known as “Schwinger-Dyson equations”

in the quantum field theory context.

Since the variation of the action with δx(t) vanishing at the endpoints gives the Euler-

Lagrange equations,

δS[x(t)] =

∫ tf

ti

dt

(

∂L

∂x
− d

dt

∂L

∂ẋ

)

δx(t) , (2.42)

and since (2.40) holds for any such δx(t), we deduce that the classical equation of motion

are valid inside the path integral (!),

∫ x(tf )=xf

x(ti)=xi

D[x(t)]

(

∂L

∂x
− d

dt

∂L

∂ẋ

)

e (i/~)S[x(t)] = 0 . (2.43)

This is the path integral version of Ehrenfest’s theorem.

18



Since this was so easy, let us generalise this a bit and consider variations of the path

which fix x(ti) but change x(tf ),

δx(ti) = 0 δx(tf ) 6= 0 . (2.44)

This means that we are calculating

δ < xf , tf |xi, ti >= δx(tf )
∂

∂xf
< xf , tf |xi, ti > . (2.45)

In this case, the variation of the action is

δS[x(t)] =

∫ tf

ti

dt

(

∂L

∂x
− d

dt

∂L

∂ẋ

)

δx(t) +
∂L

∂ẋ
δx|tf

=

∫ tf

ti

dt

(

∂L

∂x
− d

dt

∂L

∂ẋ

)

δx(t) + p(tf )δx(tf ) , (2.46)

where p(tf ) ≡ pf is the canonical momentum at t = tf . This leads to the standard

Hamilton-Jacobi relation

pf =
∂S[xc]

∂xf
. (2.47)

We deduce that

∂

∂xf
< xf , tf |xi, ti >=

i

~

∫ x(tf )=xf

x(ti)=xi

D[x(t)] p(tf ) e
(i/~)S[x(t)] , (2.48)

which is nothing other than the familiar statement that in the position representation

one has

p̂f =
~

i

∂

∂xf
. (2.49)

2.6 Back from the Path Integral to the Schrödinger Equation

In the same way, by considering a variation of tf , and using

L(xf , ẋf ) =
d

dtf
S[x(t)] =

∂S

∂tf
+ pf ẋf (2.50)

(modulo the Euler-Lagrange equations), in classical mechanics one obtains the Hamilton-

Jacobi relation
∂S[xc]

∂tf
= L(xf , ẋf )− pf ẋf = −H(xf , pf ) , (2.51)

which is strikingly reminiscent of the time-dependent Schrödinger equation. Indeed,

formally from the above identities one can obtain a path integral derivation of the

statement (1.15) that the kernel satisfies the Schrödinger equation,
(

i~
∂

∂tf
− Ĥ(x̂f , p̂f =

~

i

∂

∂xf
)

)
∫ x(tf )=xf

x(ti)=xi

D[x(t)] e (i/~)S[x(t)] = 0 . (2.52)

However, this “derivation” is incorrect in (at least) two respects.3

3I am very grateful to T. Padmanabhan for alerting me to these issues and for discussions.
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1. The p2-term in the Hamiltonian requires one to differentiate (2.48) once more. If

one assumes that ∂pf/∂xf = 0 (as one might naively believe based on Lagrangian

or Hamiltonian mechanics), the result follows. But in the Hamilton-Jacobi frame-

work (2.47) shows that this relation does not hold!

2. The above argument also ignores the correct normalisation factor of the path

integral. Since this normalisation factor can/will depend on tf , for the purposes

of the derivation of the time-dependent Schrödinger equation one cannot ignore

this prefactor.

Since we know that, by construction, the kernel calculated from the path integral satisfies

the Schrödinger equation, these two “mistakes” should cancel each other.4

While the above attempt to derive the Schrödinger equation from the path intetgral in a

slick way was not totally successful, there are of course (boring) standard derivations of

this fact, which can be found in most textbook accounts. They all essentially amount to

reverting the procedure that we have used to derive the path integral from the short-time

kernel.

This then essentially completes the (formal) proof of the equivalence of the path integral

description of quantum mechanics and the standard Schrödinger representation.

One piece of the dictionary that is still missing is how to translate matrix elements other

than the basic transition amplitude < xf , tf |xi, ti > into the path integral language.

This will be the subject of the next subsection.

2.7 Convolution, Correlation Functions and Time-Ordered Products

As we saw in section 1 and above, a crucial property of the kernel is the convolution

property (1.20). How is this encoded in the path integral representation (2.23)

K(xf , xi; tf − ti) = N
∫ x(tf )=xf

x(ti)=xi

D[x(t)]e (i/~)S[x(t); tf , ti] (2.53)

of the kernel? We need to consider seperately the integrand and the measure. As far as

the integrand is concerned, the action S[x(t); tf , ti] obviously satisfies

S[x(t); tf , ti] = S[x(t); tf , t0] + S[x(t); t0, ti] (2.54)

for any tf > t0 > ti since

∫ tf

ti

(. . .) =

∫ tf

t0

(. . .) +

∫ t0

ti

(. . .) . (2.55)

4And if somebody knows how to do this correctly, please let me know.
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And for the path integral measure we have

∫ x(tf )=xf

x(ti)=xi

D[x(t)] =

∫ +∞

−∞

dx0

∫ x(tf )=xf

x(t0)=x0

D[x(t)]

∫ x(t0)=x0

x(ti)=xi

D[x(t)] (2.56)

In words: we can perform the integral over all paths from xi to xf , by considering

all paths from xi to x0 and x0 to xf for some fixed x0 = x(t0) and then integrating

over x0. Taken together, the statements about the action and the measure imply5 the

convolution property (1.20).

So far we have only discussed the transition amplitude < xf , tf |xi, ti >, but it is also

possible to represent matrix elements of operators as path integrals. The most natu-

ral operators to consider in the present context are products of Heisenberg operators

x̂H(t1)x̂H(t2) . . ..

We begin with a single operator x̂H(t0) with tf > t0 > ti and, to simplify the notation,

we will from now on drop the subscript H on Heisenberg operators. By elementary

manipulations we find

< xf , tf |x̂(t0)|xi, ti > =

∫ +∞

−∞

dx(t0) < xf , tf |x̂(t0)|x(t0), t0 >< x(t0), t0|xi, ti >

=

∫ +∞

−∞

dx(t0) < xf , tf |x(t0), t0 >< x(t0), t0|xi, ti > x(t0) .

Turning this into a statement about path integrals, using the convolution property, we

therefore conclude that

< xf , tf |x̂(t0)|xi, ti >=
∫ x(tf )=xf

x(ti)=xi

D[x(t)] x(t0) e
(i/~)S[x(t); tf , ti] . (2.57)

Thus the insertion of an operator in the usual prescription corresponds to the insertion

of a classical function in the path integral formulation. While this is very charming, and

in line with the replacement of the Hamiltonian operator by the Lagrange function and

its action, it also immediately raises a puzzle. Namely, since x(t1) and x(t2) commute,

does the insertion of x(t1)x(t2) into the path integral calculate the matrix elements of

x̂(t1)x̂(t2) or x̂(t2)x̂(t1) or . . . ? To answer this question, we reverse the above calcu-

lation, but this time with the insertion of x(t1)x(t2). In order to use the convolution

property of the kernel or path integral, we need to distinguish the two cases t2 > t1 and

5At least as long as one pretends that N = 1 or that N has somehow been incorporated into the

definition of a suitably regularised path integral. This is the recommended attitude at the present level

of rigour (better: non-rigour), and one that we will adopt henceforth.
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t2 < t1. Then one finds

∫ x(tf )=xf

x(ti)=xi

D[x(t)] x(t1)x(t2) e
(i/~)S[x(t); tf , ti]

=

∫ x(tf )=xf

x(ti)=xi

D[x(t)] x(t2)x(t1) e
(i/~)S[x(t); tf , ti]

=

{

< xf , tf |x̂(t2)x̂(t1)|xi, ti > t2 > t1

< xf , tf |x̂(t1)x̂(t2)|xi, ti > t2 < t1
(2.58)

Using the time-ordering operator we can summarise these results as

∫ x(tf )=xf

x(ti)=xi

D[x(t)] x(t1)x(t2) e
(i/~)S[x(t); tf , ti] =< xf , tf |T (x̂(t1)x̂(t2))|xi, ti > .

(2.59)

This immediately generalises to

∫ x(tf )=xf

x(ti)=xi

D[x(t)] x(t1) . . . x(tn) e
(i/~)S[x(t); tf , ti] =< xf , tf |T (x̂(t1) . . . x̂(tn))|xi, ti > .

(2.60)

Thus the path integral always evaluates matrix elements of time-ordered products of

operators. This explains why the ordering inside the path integral is irrelevant and how

the ordering ambiguity is resolved on the operator side.

As a final variation of this theme, we consider the path integral representation of tran-

sition amplitudes between states other than the position eigenstates |x, t >. To obtain

these, we simply use the formula (1.13),

< ψf |U(tf , ti)|ψi >=

∫

dxf

∫

dxi ψ
∗
f (xf )ψi(xi)K(xf , xi; tf − ti) , (2.61)

and the path integral expression for the kernel K(xf , xi; tf − ti).

2.8 Comments

We have thus passed from a formulation of quantum mechanics based on the Hamilto-

nian (and operators and Hilbert spaces) to a Lagrangian description in which there are

only commuting objects, no operators. In this framework, the quantum nature, which

in the usual Hamiltonian approach is reflected in the non-commutativity of operators,

arises because one is instructed to consider not only classical paths, i.e. extrema of the

action (solutions to the classical equations of motion) but all possible paths, weighted

by the exponential of (i/~) times the action.

This provides an extremely intuitive picture of quantum mechanics in which one is

never led to ask questions like ”which path did the electron take?”. One also sees very
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explicitly how classical mechanics emerges in the limit ~ → 0. In that case, the path

integral will be dominated by contributions form the extrema of the action (by the usual

stationary phase approximation), i.e. precisely by those paths that are solutions to the

classical equations of motion (see the discussion in section 4.6).

It is important to note that at this point the path integral notation that we have

introduced is largely symbolic. It is a shorthand notation for the N → ∞ limit (2.17).

Provided that all our assumptions are satisfied, this is just another (albeit complicated

looking) way of writing the propagator.

However, the significance of introducing this symbolic notation should not be under-

estimated. Indeed, if one always had to calculate path integrals as the limit of an

infinite number of integrals, then path integrals might be conceptually interesting but

that approach would hardly be an efficient calculational tool. One might like to draw an

analogy here with Riemann integrals, defined as the limits of an infinite sum. In practice,

of course, one does not calculate integrals that way. Rather, one can use that definition

to establish certain basic properties of the resulting infinite sum, symbolically denoted

by the continuum sum (integral)
∫

, and then one determines definite and indefinite

integrals directly, without resorting to the discretised description. Of course, in this

process one may be glossing over several mathematical subtleties (which will ultimately

lead to the development of measure theory, the Lebesgue integral etc.), but this does

not mean that one cannot reliably calculate simple integrals without knowing about

these things.

The attitude regarding path integrals we will adopt in the following will be similar in

spirit. We will deduce some properties of path integrals from their “discretised” version

and then try to pass as quickly as possible to continuum integrals which will allow us to

perform path integrals via one “functional integration” instead of an infinite number of

ordinary integrations. Once again, this will be sweeping many important mathematical

subtleties under the rug (not the least of which is “does something like what you have

called D[x] exist at all?”), but that does not mean that we cannot trust the results that

we have obtained.6

For some historical comments on “efforts to give an improved mathematical meaning to

Feynman’s path integral formulation of quantum mechanics”, see e.g.

J.R. Klauder, The Feynman Path Integral: An Historical Slice, quant-ph/0303034.

6By the way, the answer to that questions is ”no”, but that is irrelevant - it is simply not the right

question to ask. A more pertinent question might be “can one make sense of
∫
D[x] exp(i/~)S[x] as

something like a measure (or linear functional)?”.
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2.9 Exercises

1. Using the Baker-Campbell-Hausdorff formula, determine the operator X̂, defined

by

e−(i/~)ǫ(T̂ + V̂ ) = e−(i/~)ǫT̂ e−(i/~)ǫV̂ e−(ǫ/~)2X̂ , (2.62)

to order ǫ.

2. Generalise the derivation of the path integral to systems with d > 1 degrees of

freedom. Assume that the Hamiltonian has the standard form

H =
~p2

2m
+ V (~x) , (2.63)

where ~x = (x1, . . . , xd) etc.

3. Spell out the proof of (2.52) (the path integral satisfies the Schrödinger equation)

in detail.
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3 Gaussian Path Integrals and Determinants

3.1 Preliminary Remarks

The path integral expression for the propagator we have obtained is

K(xf , xi; tf − ti) = N
∫ x(tf )=xf

x(ti)=xi

D[x(t)]e (i/~)S[x(t)] . (3.1)

We thus now need to make sense of, and develop rules for evaluating, such path integrals.

For a general system described by an action S[x] an exact evaluation of the path integral

is certainly too much to hope for. Indeed, even in the finite-dimensional case integrals

of exponentials of elementary functions can typically be evaluated in closed form only in

the purely quadratic (Gaussian, Fresnel) case, whereas more general integrals are then

evaluated ‘perturbatively’ in terms of a generating function as in (A.26).

For path integrals, the situation is quite analogous. Typically, the path integrals that

can be calculated in closed form are purely quadratic (Gaussian, Fresnel) integrals, i.e.

actions of the general time-dependent harmonic oscillator type

S[x] =
m

2

∫ tf

ti

(ẋ(t)2 − ω(t)2x(t)2) , (3.2)

perhaps with the addition of a ‘source’ term,

S[x] → S[x] +

∫

j(t)x(t) . (3.3)

Here I have suppressed the integration measure dt, and I will mostly continue to do so

in the following, i.e.
∫

is short for
∫

dt etc.

Then the strategy to deal with more general path integrals, corresponding e.g. to an

action of the form

S[x] =

∫ tf

ti

(
m

2
ẋ(t)2 − V (x(t)) , (3.4)

is to reduce it to an expansion about a quadratic action. In practice this is achieved

in one of two ways. Either the potential is of the harmonic oscillator form plus a

perturbation, V (x) = V0(x) + λW (x), and one defines the path integral via a power

series expansion in λ, a perturbative expansion. Or one defines the path integral by an

expansion around a classical solution xc(t) of the equations of motion mẍ = −V ′(x).

To quadratic order in the ‘quantum fluctuations’ around the classical solution one then

finds the action (3.2) with ω(t)2 = 1
mV

′′(xc(t)). This turns out to lead to an expansion

of the path integral in a power series in ~, a semi-classical expansion.
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In either case, the Gaussian path integral can be evaluated in reasonably closed form

and the complete path integral is then defined in terms of the generating functional

associated with this quadratic action. In this section 3 we will deal exclusively with

Gaussian integrals. The evaluation of more general integrals in terms of generating

functionals will then be one of the subjects of section 4.

3.2 The Free Particle and the Normalisation Constant N

We are now ready to tackle our first path integral. For obvious reasons we will consider

the simplest dynamical system, namely the free particle, with Lagrangian

L0(x(t), ẋ(t)) =
m

2
ẋ(t)2 . (3.5)

We thus need to calculate

K0(xf , xi; tf − ti) = N
∫ x(tf )=xf

x(ti)=xi

D[x(t)]e (i/~)S0[x(t)] , (3.6)

and we know that we should find the result (1.27),

K0(xf , xi; tf − ti) =

√

m

2πi~(tf − ti)
e
(i/~)m2

(xf−xi)2

(tf−ti) (3.7)

Since in this case we already know the result, we can use this calculation to determine

the overall normalisation of the path integral from the continuum point of view (since

N is universal: it depends only on m and (tf − ti) and not on the potential V (x)).

As described above, the general strategy is to expand the paths around a solution

to the classical equations of motion. Here the starting action is already quadratic,

but this expansion will have the added benefit of eliminating the boundary conditions

x(ti,f ) = xi,f from the path integral. We thus split any path satisfying these boundary

conditions into the sum of the classical path xc(t),

xc(t) = xi +
xf − xi
tf − ti

(t− ti) , (3.8)

and a quantum fluctuation y(t),

x(t) = xc(t) + y(t) , (3.9)

with y(t) satisfying the homogeneous boundary conditions

y(ti) = y(tf ) = 0 . (3.10)
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Plugging this into the action, one finds

S0[xc + y] = S0[xc] +
m

2

∫ tf

ti

ẏ(t)2 (3.11)

where S0[xc] is the classical action, already given in (1.28),

S0[xc] =
m

2

(xf − xi)
2

(tf − ti)
. (3.12)

There is no linear term in y(t) because we are expanding around a critical point of the

action S0[x(t)], and there are no higher than quadratic terms because the free particle

action itself is quadratic.

In the path integral, instead of integrating over all paths x(t) with the specified boundary

conditions we now integrate over all paths y(t) with the boundary conditions (3.10). We

thus find that the path integral expression for the kernel becomes

K0(xf , xi; tf − ti) = e(i/~)S0[xc]N
∫

y(ti)=y(tf )=0
D[y(t)]e

i
~

m
2

∫ tf
ti
ẏ(t)2

(3.13)

We thus automatically produce the classical action in the exponent, as in (3.7).

To get a handle on the path integral over y(t), we integrate by parts in the action to

obtain
∫

y(ti)=y(tf )=0
D[y(t)]e

i
~

m
2

∫ tf
ti
ẏ(t)2

=

∫

y(ti)=y(tf )=0
D[y(t)]e

i
~

m
2

∫ tf
ti
y(t)(−∂2t )y(t)

(3.14)

Comparing with the fundamental Fresnel integral formula (A.32),
∫ +∞

−∞

ddx e iAabx
axb/2 =

(

det
A

2πi

)−1/2

, (3.15)

we deduce that what this path integral formally calculates is the determinant of the

differential operator (−∂2t ),
∫

y(ti)=y(tf )=0
D[y(t)]e

i
~

m
2

∫ tf
ti
y(t)(−∂2t )y(t) =

(

Det
m

2πi~
[−∂2t ]

)−1/2
. (3.16)

I denote the (functional) determinant of an operator by Det to distinguish it from

a standard finite-dimensional determinant. We will discuss this determinant in more

detail momentarily. First of all, we note that comparison of (3.7) and (3.13) shows that

the infinite normalisation constant N is related to this determinant by

N =

√

m

2πi~(tf − ti)

(

Det
m

2πi~
[−∂2t ]

)+1/2
. (3.17)

We also see that the normalised path integral measure D̂[y(t)] introduced in (2.28) is

such that it normalises the free particle Gaussian fluctuation integral to unity,
∫

y(ti)=y(tf )=0
D̂[y(t)]e

i
~

m
2

∫ tf
ti
y(t)(−∂2t )y(t) = 1 . (3.18)
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3.3 The Free Particle: Fluctuation Determinant and Mode Expansion

Now let us return to the definition of the determinant of a differential operator. As in

the finite-dimensional case, this determinant is formally defined as the product of the

eigenvalues. That this is indeed what the path integral gives rise to can be seen more

explicitly by expanding y(t) in normalised eigenmodes yn(t) of the operator (−∂2t ),

y(t) =
∑

n

cnyn(t) , (3.19)

with

(

−∂2t
)

yn(t) = λnyn(t)
∫ tf

ti

yn(t)ym(t) = δm,n

yn(ti) = yn(tf ) = 0 . (3.20)

In terms of this decomposition, the action becomes

m

2

∫ tf

ti

y(t)(−∂2t )y(t) =
m

2

∑

n

λnc
2
n . (3.21)

Thus the expansion of y(t) in terms of eigenmodes is tantamount to diagonalising the

operator (this statement is obviously true more generally). Then the path integral over

all y(t) becomes an integral over the cn,

∫

y(ti)=y(tf )=0
D[y(t)] =

∏

n

(
∫ +∞

−∞

dcn

)

, (3.22)

and thus the path integral reduces to an infinite product of finite-dimensional Gaussian

integrals, with the result

∫

y(ti)=y(tf )=0
D[y(t)]e

i
~

m
2

∫ tf
ti
y(t)(−∂2t )y(t) =

∏

n

(
∫ +∞

−∞

dcn

)

e
i
~

m
2

∑

n λnc
2
n

=

(

∏

n

m

2πi~
λn

)−1/2

. (3.23)

It is this infinite product which we have defined as the determinant.

It will be useful for later to know explicitly the eigenvalues λn. The properly normalised

eigenfunctions are

yn(t) =

√

2

tf − ti
sinnπ

t− ti
tf − ti

. (3.24)
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Since y−n(t) = −yn(t), the linearly independent solutions are yn(t) with n ∈ N and the

corresponding eigenvalues are

λn =
n2π2

(tf − ti)2
. (3.25)

We thus have

Det[−∂2t ] =
∞
∏

n=1

n2π2

(tf − ti)2
(3.26)

This is clearly infinite, and thus Det−1/2[−∂2t ] is zero, but this is compensated by the

infinite normalisation constant in precisely such a way that one obtains the finite result

(3.17).

N
(

Det
m

2πi~
[−∂2t ]

)−1/2
=

√

m

2πi~(tf − ti)
(3.27)

For more comments on determinants and regularised determinants see sections 3.5 and

3.6.

3.4 The Harmonic Oscillator

We have now accumulated all the techniques we need to tackle a more interesting ex-

ample, namely the time-independent harmonic oscillator, with action

S[x] =
m

2

∫ tf

ti

(ẋ(t)2 − ω2
0x(t)

2) . (3.28)

Following the same strategy as for the free particle, we decompose the path into a

classical path xc(t) and the fluctuation y(t), determine the classical action and the (still

quadratic) action for y(t), and then perform the Gaussian integral over y(t).

The classical path and action are (see Exercise 1)

xc(t) = xi
sinω0(tf − t)

sinω0(tf − ti)
+ xf

sinω0(t− ti)

sinω0(tf − ti)

S[xc] =
m

2

ω0

sinω0(tf − ti)

[

(x2i + x2f ) cosω0(tf − ti)− 2xixf
]

. (3.29)

Expanding the action around xc(t), one finds

S[xc + y] = S[xc] +
m

2

∫ tf

ti

y(t)(−∂2t − ω2
0)y(t) (3.30)

Thus the path integral we need to calculate is

K(xf , xi; tf − ti) = e(i/~)S[xc]N
∫

y(ti)=y(tf )=0
D[y(t)]e

i
~

m
2

∫ tf
ti
y(t)(−∂2t − ω2

0)y(t)

(3.31)
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This is once again a straightforward Gaussian (Fresnel) integral, and thus one finds,

using the result (3.17),

K(xf , xi; tf − ti) =

√

m

2πi~(tf − ti)

√

Det m
2πi~ [−∂2t ]

Det m
2πi~ [−∂2t − ω2

0 ]
e (i/~)S[xc]

=

√

m

2πi~(tf − ti)

√

Det[−∂2t ]
Det[−∂2t − ω2

0]
e (i/~)S[xc] (3.32)

Since in writing the above we have taken into account the normalisation factor, the

result should be well defined and finite. This is indeed the case. To calculate this ratio

of determinants, we observe first of all that if the eigenvalues of the operator (−∂2t ) are
λn, the eigenvalues µn of the operator (−∂2t − ω2

0) are µn = λn − ω2
0 . Thus the ratio of

determinants is
√

Det[−∂2t ]
Det[−∂2t − ω2

0]
=

(

∏

n

λn
λn − ω2

0

)1/2

=

(

∏

n

(1− ω2
0

λn
)

)−1/2

. (3.33)

Even though this may not be obvious from this expression, the result is actually an

elementary function. First of all, using the explicit expression for the λn, one has

∞
∏

n=1

(1− ω2
0

λn
) =

∞
∏

n=1

(1− ω2
0(tf − ti)

2

n2π2
) . (3.34)

The function

f(x) =

∞
∏

n=1

(1− x2

n2π2
) (3.35)

is an even function of x with f(0) = 1 and simple zeros at x = ±nπ. This shows (see

also Appendix B) that this is an infinite product representation of

f(x) =
sinx

x
. (3.36)

Therefore, the final result for the ratio of determinants is
√

Det[−∂2t ]
Det[−∂2t − ω2

0]
=

√

ω0(tf − ti)

sinω0(tf − ti)
, (3.37)

and our final compact result for the propagator of the harmonic oscillator is

K(xf , xi; tf − ti) =

√

m

2πi~(tf − ti)

√

ω0(tf − ti)

sinω0(tf − ti)
e (i/~)S[xc]

=

√

mω0

2πi~ sinω0(tf − ti)
e (i/~)S[xc] (3.38)
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with

S[xc] =
m

2

ω0

sinω0(tf − ti)

[

(x2i + x2f ) cos ω0(tf − ti)− 2xixf
]

. (3.39)

It is easy to see that this result reduces to that for the free particle in the limit ω0 → 0.

Given the above result for the kernel, we also immediately obtain an expression for the

partition function by setting xi = xf = x and integrating over x. This is a Fresnel

integral, and the result is

Z(tf − ti) =
1

2i sin
ω0(tf−ti)

2

. (3.40)

This can be expanded as

Z(tf − ti) =

∞
∑

n=0

e−(i/~)(tf − ti)En , (3.41)

where (cf. (2.33))

En = ~ω0(n+ 1
2) (3.42)

are the harmonic oscillator energy levels. (Exercise)

3.5 Gaussian Path Integrals and Determinants: the VVPM and GY For-

mulae

Frequently one encounters time-dependent harmonic oscillators with Hamiltonian

H(t) =
1

2m
p2 +

mω(t)2

2
x2 (3.43)

and the quadratic action

S[x] =
m

2

∫ tf

ti

(ẋ(t)2 − ω(t)2x(t)2) . (3.44)

For instance, expanding the general action

S[x] =
m

2

∫ tf

ti

(ẋ(t)2 − 2

m
V (x(t)) (3.45)

to second order around a classical solution xc(t) of the equations of motion mẍ =

−V ′(x), one finds the action (3.44) with

ω(t)2 =
1

m
V ′′(xc(t)) . (3.46)
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The resulting path integral is still Gaussian, and exactly the same strategy as above can

be used to show that the path integral result for the kernel of the evolution operator is

(cf. (3.32))

< xf |T̂ e−(i/~)
∫ tf
ti
dt Ĥ(t)|xi >=

√

m

2πi~(tf − ti)

√

Det[−∂2t ]
Det[−∂2t − ω(t)2]

e (i/~)S[xc] .

(3.47)

Here xc(t) now denotes the classical harmonic oscillator solution with the given bound-

ary condition, xc(ti) = xi and xc(tf ) = xf , S[xc] is the classical action, and the fluctu-

ation determinants are to be calculated for zero (Dirichlet) boundary conditions.

In order to evaluate the result for the propagator (3.47), one needs to determine the

classical action and the ratio of fluctuation determinants. The former is rather straight-

forward provided that one can find the classical solution. An integration by parts shows

that the classical action can be calculated in terms of the boundary values of xc(t) and

ẋc(t) at t = ti, tf ,

S[xc] =
m

2

∫ tf

ti

(ẋc(t)
2 − ω(t)2xc(t)

2) =
m

2
[xf ẋc(tf )− xiẋc(ti)] . (3.48)

The calculation of the ratio of determinants would be complicated if one tried to cal-

culate these determinants directly, as we did in the time-independent case. Fortunately

there are two elegant shortcuts to calculating this ratio of determinants which are finite-

dimensional in nature and do not require the calculation of a fuctional determinant. I

will briefly describe these below.

One can for instance use the useful and remarkable result that the ratio of determinants

can be calculated from the classical action via the Van Vleck - Pauli - Morette (VVPM)

formula
√

m

2πi~(tf − ti)

√

Det[−∂2t ]
Det[−∂2t − ω(t)2]

=
1√
2πi~

√

−∂
2S[xc]

∂xi∂xf
(3.49)

More generally, for a d-dimensional quantum system, the 2nd derivative of the classical

action would be replaced by the d-dimensional VVPM determinant

∂2S[xc]

∂xi∂xf
→ det

[

∂2S[xc]

∂xµi ∂x
ν
f

]

.

This is a non-trivial but standard and well-known result. Notice that, to evaluate the

ratio of quantum fluctuations in this manner, one only needs to know the classical

action.

In the case of the harmonic oscillator with constant frequency, agreement between the

VVPM formula and the result we obtained in (3.38) can be immediately verified from
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the classical action (3.39) which gives

−∂
2S[xc]

∂xi∂xf
=

mω0

sinω0(tf − ti)
. (3.50)

Alternatively, instead of the VVPM result one can use the equally remarkable, but

apparently much less well known, Gelfand-Yaglom (GY) formula that states that

Det[−∂2t − ω(t)2]

Det[−∂2t ]
=
Fω(tf )

tf − ti
(3.51)

where Fω(t) is the solution of the classical harmonic oscillator equation

(∂2t + ω(t)2)Fω(t) = 0 (3.52)

with the initial conditions

Fω(ti) = 0 Ḟω(ti) = 1 . (3.53)

Thus one has the simple result

√

m

2πi~(tf − ti)

√

Det[−∂2t ]
Det[−∂2t − ω(t)2]

=

√

m

2πi~Fω(tf )
(3.54)

It is quite remarkable that the ratio of fluctuation determinants, which involves the

product over all eigenvalues of the operator −(∂2t + ω(t)2) (with zero boundary condi-

tions), can be expressed in terms of the zero mode (solution with zero eigenvalue) of

the same operator with the GY boundary conditions (3.53).

Once again, as an example we consider the constant frequency harmonic oscillator. The

solution of the classical equations of motion satisfying the GY boundary conditions is

evidently

Fω0
(t) =

1

ω0
sinω0(t− ti) . (3.55)

Thus

Fω0
(tf ) =

1

ω0
sinω0(tf − ti) (3.56)

and the GY formula predicts

Det[−∂2t − ω2
0]

Det[−∂2t ]
=

sinω0(tf − ti)

ω0(tf − ti)
, (3.57)

in perfect agreement with the result (3.37).

Some comments:
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1. If f(t) is a solution of the harmonic oscillator equation with f(ti) = 0, the GY

solution is evidently Fω(t) = f(t)/ḟ(ti) with

Fω(tf ) =
f(tf )

ḟ(ti)
. (3.58)

If, on the other hand, f(t) is any solution of the harmonic oscillator equation with

f(ti) 6= 0, the GY solution can be constructed from it as

Fω(t) = f(ti)f(t)

∫ t

ti

dt′
1

f(t′)2
(3.59)

In particular, one has

Fω(tf ) = f(ti)f(tf )

∫ tf

ti

dt
1

f(t)2
. (3.60)

2. The denominator tf − ti in the GY formula (3.51) can be interpreted as F0(tf ),

where

F0(t) = t− ti (3.61)

solves the free-particle (ω = 0) equations of motion with the GY boundary condi-

tions, so that one can write (3.51) in the more suggestive form

Det[−∂2t − ω(t)2]

Det[−∂2t ]
=
Fω(tf )

F0(tf )
. (3.62)

3. Comparison with the VVPM formula gives the relation

∂2S[xc]

∂xi∂xf
= − m

Fω(tf )
. (3.63)

With a bit of effort this purely classical (in the sense of classical mechanics) formula

can be proved directly via Hamilton-Jacobi theory (see Appendix C), but this by

itself provides no insight into the reason for the validity of either the VVPM or

the GY formula.

A slick proof of the GY formula, in the form (3.62), has been given by S. Coleman in

his Erice lectures on The uses of instantons (Appendix A), reprinted in

S. Coleman, Aspects of Symmetry, Selected Erice Lectures, Cambridge University Press

(1985).

This proof is also reproduced in

L.S. Schulman, Techniques and Applications of Path Integration, Dover (2005).
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It works roughly as follows (to make this argument more precise one should insert words

like “Fredholm operators” etc. in appropriate places):

Let Fω,λ(t) be the solution of the equation

(−∂2t − ω(t)2)Fω,λ(t) = λFω,λ(t) (3.64)

with the GY boundary conditions

Fω,λ(ti) = 0 , Ḟω,λ(ti) = 1 . (3.65)

Thus Fω,0(t) is what we called Fω(t) above, and Fω,λ(t) has the property that Fω,λ(tf ) =

0 iff λ is an eigenvalue of the operator (−∂2t − ω(t)2) with zero Dirichlet boundary

conditions (because then Fω,λ(t) is the corresponding eigenfunction).

The claim is now that
Det[−∂2t − ω(t)2 − λ]

Det[−∂2t − λ]
=
Fω,λ(tf )

F0,λ(tf )
(3.66)

for all λ ∈ C. Here, Det is again defined to be the product of all eigenvalues. In

particular, this implies the GY result (3.62) for λ = 0.

To establish this claim, one considers the left and right hand sides as functions of the

complex variable λ. The left hand side is a meromorphic function of λ with a simple

zero at each eigenvalue λn of (−∂2t −ω(t)2) (an eigenvalue λn of (−∂2t −ω(t)2) is a zero

eigenvalue of (−∂2t − ω(t)2) − λn)), and a simple pole at each eigenvalue λ0,n of (−∂2t )
(for the same reason). By the remark above (3.66), exactly the same is true of the right

hand side. In particular, the ratio of the left and the right hand sides has no poles and

is therefore an analytic function of λ.

Moreover, provided that ω(t) is a bounded function of t, for λ sufficiently large, |λ| → ∞,

one can ignore ω(t), and hence both the left and the right hand side go to 1 in that limit

(everywhere except on the real positive line where one can find large real eigenvalues).

Putting these two observations together, one concludes that the ratio of the two sides

is an analytic function of λ that goes to 1 in any direction except perhaps along the

positive real axis, and this implies that the ratio is equal to 1 identically, which concludes

the proof of the identity (3.66).

Another elegant continuum (i.e. non-discretised) proof of the GY formula (3.51) can be

found in

H. Kleinert, A. Chervyakov, Simple Explicit Formulas for Gaussian Path Integrals with

Time-Dependent Frequencies, Phys. Lett. A245 (1998) 345-357; quant-ph/9803016.

Yet another proof can be assembled from sections 3.3, 3.5 and 34.2 of
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J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford Science Publi-

cations, 1989).

A proof along these lines is also outlined in Appendix A of

R. Rajaraman, Solitons and Instantons (North Holland 1982, 1987)

3.6 Some Comments on the Regularisation of Determinants

In the above we have repeatedly encountered determinants of infinite-dimensional oper-

ators, and we have treated them in quite a formal and cavalier way. In the following, I

want to (very) briefly indicate some ways to define these objects in a more satisfactory

manner.

There are certain infinite-dimensional operators for which the definition of a determinant

poses no real problem. For example, for most intents and purposes, trace class operators

K (i.e. operators for which the trace exists), and operators of the form I+K, where I is

the identity operator and K a trace class operator, behave like finite-dimensional linear

operators (matrices). For invertible (n× n)-matrices M one can write the determinant

(with K = I−M) as

detM = det(I+K) = 1 + trK + tr(∧2K) + . . . + tr(∧nK) . (3.67)

Here ∧pK (the p’th anti-symmetric power of K) denotes the operator implementing

the induced action of K on anti-symmetric p-vectors. Analogously, one can define the

(Fredholm) determinant of an invertible operator I+K with K trace class by

DetF (I+K) = 1 + TrK +Tr(∧2K) + . . . , (3.68)

since this series is absolutely convergent. However, most operators appearing in physics

are not of this form, and hence one needs to be more creative.

In section 3.4 we had seen that, even though Det(−∂2t − ω2
0) (the product of the eigen-

values) diverges, the ratio of this determinant and the (equally divergent) free particle

determinant gave us a finite result. More generally, the ratio of determinants that ap-

pears in (3.47) can be interpreted as defining a regularised functional determinant of

the operator (−∂2t − ω(t)2), in the sense of

Detreg[−∂2t − ω(t)2] :=
Det[−∂2t − ω(t)2]

Det[−∂2t ]
(3.69)

It is this regularised determinant that the normalised path integral with measure D̂[x]
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computes (cf. (2.28,3.18)),

∫

y(ti)=y(tf )=0
D̂[y(t)]e

i
~

m
2

∫ tf
ti
y(t)(−∂2t − ω(t)2)y(t)

=
(

Detreg[−∂2t − ω(t)2]
)−1/2

.

(3.70)

However, usually in the physics literature one adopts a slighly different attitude. Instead

of regularising explicitly by means of the free particle determinant (which is neverthe-

less natural from the path integral point of view) one attempts to define meaningful

individual (instead of ratios of) regularised functional determinants in other ways, e.g.

via the so-called ζ-function or heat kernel regularisation.

For a sufficiently reasonable (elliptic, self-adjoint, . . . ) operator A with eigenvalues λn,

define the spectral ζ-function of A to be the function

ζA(s) =
∑

n

λ−s
n . (3.71)

This generalises the definition of the ordinary Riemann ζ-function ζ(s),

ζ(s) =
∞
∑

n=1

n−s . (3.72)

To see the relation between the spectral ζ-function and the determinant, one differenti-

ates once,

ζ ′A(s) = −
∑

n

λ−s
n log λn , (3.73)

to conclude that

ζ ′A(0) = −
∑

n

log λn = − log
∏

n

λn . (3.74)

Formally, therefore, one has
∏

n

λn = e−ζ ′A(0) , (3.75)

but, at this point, the left hand side is as ill-defined as the right hand side because

ξA(s), as it stands, will be convergent only for Re(s) sufficiently large and positive (and

not at s = 0).

Likewise, the ordinary Riemann ζ-function, as it stands, converges only for Re(s) > 1.

However, in that case it is well known that ζ(s) can be analytically continued to a

meromorphic function of s in the entire complex s-plane, with a pole only at s = 1. In

particular, one then has cute results like

ζ(0) = −1
2 (

∑∞
n=1 1 )

ζ(−1) = − 1
12 (

∑∞
n=1 n )

ζ(−2) = 0 (
∑∞

n=1 n
2 )

(3.76)
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as well as (we will need this below)

ζ ′(0) = −1
2 log 2π . (3.77)

For a poor man’s (handwaving) proof of these identities, see Appendix D. Note that,

with

ζ ′(0) = −
∞
∑

n=1

log n , (3.78)

this result can be written as the equally cute and astounding identity

∞
∏

n=1

n2 = 2π . (3.79)

Analogously, under favourable circumstances the spectral ζ-function ζA(s) can be ex-

tended to a meromorphic function of s which is holomorphic at s = 0, and then (3.75)

can be used to define the ζ-function regularised determinant of A via

Detζ A = e−ζ
′
A(0) . (3.80)

To illustrate this method, let us go back to the calculation of the free particle determi-

nant in section 3.3. There we had seen that the eigenvalues of the operator A = −∂2t
(with Dirichlet boundary conditions) are

λn =
n2π2

T 2
n = 1, 2, . . . (3.81)

where T = tf − ti. To define the determinant, we construct the spectral ζ-function

ζA(s) =

∞
∑

n=1

(nπ

T

)−2s
=

(

T

π

)2s

ζ(2s) = e2s log(T/π)ζ(2s) (3.82)

and calculate

ζ ′A(0) = 2ζ(0) log(T/π) + 2ζ ′(0) = − log(T/π) − log(2π) = − log(2T ) . (3.83)

Thus we conclude that, with ζ-function regularisation,

Detζ [−∂2t ] = 2T . (3.84)

Likewise, for the harmonic oscillator determinant of section 3.4, with

λn =
n2π2

T 2
− ω2

0 n = 1, 2, . . . (3.85)

one finds

Detζ [−∂2t − ω2
0] = 2T

sinTω0

Tω0
. (3.86)
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In particular, we have
Detζ [−∂2t − ω2

0]

Detζ [−∂2t ]
=

sinTω0

Tω0
(3.87)

in perfect agreement with the previously obtained result (3.37),

√

Det[−∂2t ]
Det[−∂2t − ω2

0]
=

√

ω0(tf − ti)

sinω0(tf − ti)
. (3.88)

While this ζ-function regularised definition of the determinant captures most of the

essential properties of the standard determinant, some care is required in manipulating

these objects. For example, one important property of the standard determinant in

the finite-dimensional case is its multiplicativity det(MN) = det(M) det(N). To what

extent an analogous identity

Detζ(AB)
?
= Detζ ADetζ B (3.89)

holds in the infinite-dimensional case is discussed e.g. in elemntary terms in

hep-th/9804118; E. Elizalde, On the concept of determinant for the differential opera-

tors of Quantum Physics, hep-th/9906229,

and, from a more mathematical point of view, in (warning: not for the faint of heart)

M. Kontsevich, S. Vishik, Determinants of elliptic pseudo-differential operators (155 p.,

hep-th/9404046).

3.7 Exercises

1. Verify (3.29). Instead of calculating the classical action by integration, try to

determine it in an intelligent way by proving first that only boundary terms con-

tribute to the classical action,

S[xc] =
m

2
[xf ẋc(tf )− xiẋc(ti)] . (3.90)

2. Verify that the harmonic oscillator kernel (3.38)

• satisfies the harmonic oscillator Schrödinger equation (1.15)

• and the initial condition (1.14),

• and reduces to the free particle propagator for ω0 → 0.

3. Verify the result (3.40) for the partition function of the harmonic oscillator, and

the expansion (3.41).

39



4. Fill in the missing steps in the proof of the identity (3.63) given in Appendix C.

In particular, verify (C.10).

5. Find an elementary proof of the VVPM formula

Det[−∂2t ]
Det[−∂2t − ω(t)2]

= −(tf − ti)

m

∂2S[xc]

∂xi∂xf
(3.91)

or the GY formula
Det[−∂2t ]

Det[−∂2t − ω(t)2]
=
F0(tf )

Fω(tf )
(3.92)

and publish it and/or tell me about it.
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4 Generating Functionals and Perturbative Expansions

In this section we will study some other important properties of the path integral, in

particular the perturbative and semi-classical expansion of non-Gaussian path integrals.

The treatment in this section is somewhat more cursory than in the previous sections -

the main intention is to give a flavour of things to come (in a course on quantum field

theory, say).

4.1 The Generating Functional Z[J ]

The main objects of interest in quantum field theory are vacuum expectation values

of time-ordered products of field operators. These matrix elements can be obtained

from a generating functional which, in turn, can be expressed as a path integral. This

motivates the following discussion of these concepts in the quantum mechanical context.

Before turning to the path integral, we introduce the generating functionals for the

correlation functions (n-point functions)

Gfi(t1, . . . , tn) = < xf , tf |T (x̂(t1) . . . x̂(tn))|xi, ti >
G(t1, . . . , tn) = < 0|T (x̂(t1) . . . x̂(tn))|0 > . (4.1)

They are defined as

Zfi[j] =

∞
∑

n=0

(i/~)n

n!

∫ tf

ti

dt1 . . . dtnj(t1) . . . j(tn)Gfi(t1, . . . , tn)

= < xf , tf |T e
(i/~)

∫ tf
ti
dt j(t)x̂(t)|xi, ti > (4.2)

Z[j] =

∞
∑

n=0

(i/~)n

n!

∫ +∞

−∞

dt1 . . . dtnj(t1) . . . j(tn)G(t1, . . . , tn)

= < 0|T e
(i/~)

∫ +∞

−∞
dt j(t)x̂(t)|0 > . (4.3)

From these generating functionals, the individual correlation functions can evidently be

reconstructed by differentiation,

Gfi(t1, . . . , tn) =

(

~

i

)n δnZfi[j]

δj(t1) . . . δj(tn)
|j(t)=0

G(t1, . . . , tn) =

(

~

i

)n δnZ[j]

δj(t1) . . . δj(tn)
|j(t)=0 . (4.4)

For Zfi[j] we can easily deduce a path integral representation. Using (2.60) and the

definition (4.2), one finds

Zfi[j] = N
∫ x(tf )=xf

x(ti)=xi

D[x(t)] e (i/~)S[x(t); j(t); tf , ti] ,
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where

S[x(t); j(t); tf , ti] = S[x(t); tf , ti] +

∫ tf

ti

dt j(t)x(t) (4.5)

is the action with a source term (or the action with a coupling of x(t) to the current

j(t)). Thus the generating functional Zfi[j] is the path integral for the action with a

source term.

Our aim is now to find a similar path integral representation for Z[j]. For that we need

to project from the states |x, t > to the ground state |0 >. To that end we first expand

the state |x, t > in a basis of eigenstates |n > of the Hamiltonian,

|x, t >= e(i/~)tĤ |x >=
∑

n

e (i/~)tĤ |n >< n|x >=
∑

n

e (i/~)tEnψ∗
n(x)|n > . (4.6)

Thus for the correlation functions (2.60) of time-ordered products of operators one finds

Gfi(t1, . . . , tp) =
∑

m,n

e−(i/~)tfEn + (i/~)tiEm ×

ψn(xf )ψ
∗
m(xi) < n|T (x̂(t1) . . . x̂(tp))|m > . (4.7)

To accomplish the projection onto the vacuum expectation value, we now take the limit

tf,i → ±∞. This can be understood in a number of related ways. They all amount

to the statement that, in the sense of distributions, exp(−itE) → 0 for t → ∞, the

dominant contribution in that limit coming from the smallest possible value of E, i.e.

from the ground state. Explicitly, one can for instance replace En → (1 − iǫ)En for

a small positive ǫ and then take the limit ǫ → 0 at the end. Alternatively, one can

“analytically continue” to imaginary time, take the limit there, and then continue back

to real time. In whichever way one proceeds, one can conclude that

G(t1, . . . , tn) = < 0|T (x̂(t1) . . . x̂(tn))|0 > (4.8)

= lim
tf,i→±∞

e (i/~)(tf − ti)E0

ψ0(xf )ψ
∗
0(xi)

∫ x(tf )=xf

x(ti)=xi

D[x(t)] x(t1) . . . x(tn) e
(i/~)S[x(t); tf , ti] .

As the left hand side is independent of the boundary conditions xf,i imposed at t→ ±∞,

so is the right hand side. Passing now to the generating functional Z[j] (4.3), we can

once again rewrite the infinite sum as an exponential in the path integral to deduce

(suppressing the dependence on the boundary conditions) that

Z[j] ∼
∫

D[x(t)] e (i/~)S[x(t); j(t); tf,i = ±∞] , (4.9)

where

S[x(t); j(t), tf,i = ±∞] =

∫ +∞

−∞

dt [L(x(t), ẋ(t)) + j(t)x(t)] . (4.10)
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The proportionality factor (normalisation constant) is fixed by

Z[j = 0] =< 0|0 >= 1 . (4.11)

We therefore obtain the final result

Z[j] =

∫

D[x(t)] e (i/~)S[x(t); j(t); tf,i = ±∞]

∫

D[x(t)] e (i/~)S[x(t); tf,i = ±∞]
. (4.12)

The right hand side is independent of the boundary conditions imposed at t = ±∞
provided that one chooses the same boundary conditions in the numerator and the

denominator.

4.2 Green’s Functions and the Generating Functional for Quadratic

Theories

As we will reduce the calculation of a general path integral and its generating functional

to that of a quadratic theory, in this section we will determine explicitly the generating

functional for the latter.

For finite-dimensional Fresnel integrals one has (see e.g. Exercise 1.5.3 and equation

(A.13))
∫

ddx e iAabx
axb/2 + ijax

a
=

(

det
A

2πi

)−1/2

e−iG
abjajb/2 , (4.13)

where Gab is the inverse matrix (“Green’s function”) to Aab, G
abAbc = δac. Thus the

“generating function” is

z0[j] :=

∫

ddx e iAabx
axb/2 + ijax

a

∫

ddx e iAabx
axb/2

= e−iG
abjajb/2 . (4.14)

It follows from this that the “2-point function”

< xcxd >:=

∫

ddx xcxd e iAabx
axb/2

∫

ddx e iAabx
axb/2

(4.15)

is

< xcxd > =

[

1

i

∂

∂jc

1

i

∂

∂jd
z0[j]

]

j=0

=

[

1

i

∂

∂jc

(

−Gadjaz0[j]
)

]

j=0

= iGcd . (4.16)
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Thus the “2-point function” is the “Green’s function” of the Fresnel integral.

Higher moments (n-point functions) can be calculated in a similar way. For n odd they

are manifestly zero. For the 4-point function one finds (Exercise)

< xaxbxcxd >=< xaxb >< xcxd > + < xaxc >< xbxd > + < xaxd >< xbxc > (4.17)

etc. The general result, expressing the 2n-point functions as a sum over all possible

pairings P (x1, . . . , x2n),

< x1 . . . x2n >=
∑

P (x1,...,x2n)

< xi1xi2 > . . . < xi2n−1
xi2n > (4.18)

(there are (2n − 1)!! terms) is also easily deduced from the generating function z0[j].

In the quantum field theory context, this result is known as Wick’s Theorem and, even

though a simple result, is of enormous practical significance in perturbative calculations.

We now consider the analagous question for harmonic oscillator path integrals. In this

case, one finds, in precise analogy with the finite-dimensional case,

Z0[j] = e
−(i/m~)

∫ +∞

−∞
dt
∫ +∞

−∞
dt′ j(t)G0(t, t

′)j(t′)/2
, (4.19)

where G(t, t′) is a Green’s function (the inverse) of the operator −∂2t − ω(t)2,

(−∂2t − ω(t)2)G0(t, t
′) = δ(t − t′) . (4.20)

For the finite-time path integral, the Green’s function that appears here would have

been determined by the Dirichlet (zero) boundary conditions at ti,f to be the Green’s

function with

G0(tf , t
′) = G0(t, ti) = 0 . (4.21)

In the present case (infinite time interval), the relevant Green’s function is implicitly

determined by an iǫ prescription. In particular, for the time-independent harmonic

oscillator with constant frequency ω0 one finds

G0(t, t
′) =

1

2iω0
e−iω0|t− t′| . (4.22)

Once we know the generating functional, we can use it to calculate n-point functions.

In particular, for the two-point function one has

< 0|T (x̂(t)x̂(t′))|0 > =

[

~

i

δ

δj(t)

~

i

δ

δj(t′)
Z0[j]

]

j=0

=
i~

m
G0(t, t

′) . (4.23)

That the time-ordered product < 0|T (x̂(t)x̂(t′))|0 > is a Green’s function can of course

also be verified directly in the standard operator formulation of quantum mechanics

(Exercise). Likewise, higher n-point functions can be expressed in terms of products of

2-point functions (Wick’s theorem again).
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4.3 Perturbative Expansion and Generating Functionals

As we have seen, the generating functional Z[j] encodes all the information about the

n-point functions G(x1, . . . , xn). However, this is only useful if supplemented by a

prescription for how to calculate Z[j]. Since in practice the only path integrals that

we can do explicitly are Gaussian path integrals and their close relatives, the question

arises how to reduce the evaluation of Z[j] to an evaluation of Gaussian integrals.

This is achieved via a perturbative expansion of the path integral around a quadratic

(Gaussian) action. The (assumed) small perturbation expansion parameter can be a

coupling constant λ, as in

Ĥ = Ĥ0 + λŴ , (4.24)

with Ĥ0 a harmonic oscillator Hamiltonian. In this case one is studying a path integral

counterpart of standard quantum mechanical perturbation theory.

Alternatively, the small parameter could be Planck’s constant ~ itself. In this case one

is interested in evaluating the path integral
∫

D[x] e (i/~)S[x] (4.25)

for ~ → 0 as a power series in ~ by expanding the action around a classical solution xc(t).

This is a semi-classical expansion of the path integral, a counterpart of the standard

WKB approximation of quantum mechanics.

Both physically and technically (in one case one has a small parameter in front of a part

of the action, the perturbation, in the other a large parameter 1/~ in front of the entire

action) these two expansions appear to be quite distinct. Calculationally, however,

they are rather similar, since in both cases the path integral can be reduced to a series

expansion in derivatives of the generating functional of the quadratic theory. This is

immediate for the perturbative λ-expansion (which we will consider in this section)

but requires a minor bit of trickery for the ~-expansion (hence the excursion into the

stationary phase approximation for finite-dimensional integrals in section 4.5).

For definiteness, we will assume that the perturbation Ŵ arises from a velocity-independent

perturbation of the potential

V (x) = V0(x) + λW (x) , (4.26)

with V0(x) a harmonic oscillator potential. For more complicated perturbations one

would have to go back to the phase space path integral, introduce sources for both x̂(t)

and p̂(t), etc. Then the action takes the form

S[x] = S0[x] + λSI [x] = S0[x]− λ

∫

dt W (x(t)) , (4.27)
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where S0[x] is the free action, and SI [x] the perturbation or interaction term.

To calculate the path integral, one introduces a source-term for the free action S0[x],

S0[x, j] = S0[x] +

∫

dt j(t)x(t) , (4.28)

and determines Zfi,0[j] or Z0[j]. Focussing on the latter, the vacuum generating func-

tional Z[j] for the perturbed action can then be written in terms of that for the free

action as

Z[j] = N e
(iλ/~)SI [

~

i
δ

δj(t) ]Z0[j] . (4.29)

The normalisation constant, determined by the condition Z[j = 0] = 1, is

N−1 =

[

e
(iλ/~)SI [

~

i
δ

δj(t) ]Z0[j]

]

j=0

(4.30)

This result for Z[j] is manifestly a power series expansion in λ - and the fact that this

perturbative expansion is so straightforward to obtain in the path integral formalism is

one of the reasons that makes the path integral approach to quantum field theory so

powerful.

Moreover, using the explicit expression (4.19) for the generating functional Z0[j] in terms

of the Green’s functions of the free theory, one sees that the generating functional Z[j],

and thus all the n-point functions of the perturbed theory, are expressed as a series

expansion in terms of the Green’s functions of the unperturbed theory. A graphical

representation of this expansion leads to the Feynman diagram expansion of quantum

mechanics (and quantum field theory).

4.4 The Stationary Phase Approximation for Oscillatory Integrals

The integrals of interest in this section are oscillatory integrals of the kind

∫ +∞

−∞

dx e (i/~)f(x) . (4.31)

The basic tenet of the stationary phase approximation of such integrals is that for small

~, ~ → 0, the integrand oscillates so rapidly that the integral over any small x-interval

will give zero unless one is close to a critical point xc of f(x), f ′(xc) = 0, for which to

first order around xc there are no oscillations. This suggests that for ~ → 0 the integral

is dominated by the contribution from the neighbourhood of some critical point(s) xc

of f(x), and that therefore in this limit the dominant contribution to the integral can

be obtained by a Taylor expansion of f(x) around x = xc.
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To set the stage for this discussion, we will first reconsider the Gaussian and Fresnel

integrals of Appendix A from this point of view. There we had obtained the formula

(A.13),
∫ +∞

−∞

dx e iax
2/2 + ijx =

√

2πi

a
e−ij

2/2a (4.32)

by analytic continuation from the corresponding Gaussian integral and/or completing

the square. A (for the following) more instructive way of obtaining this result is to

consider the integral
∫ +∞

−∞

dx e (i/~)q(x) (4.33)

for some quadratic function of x (q(x) = ax2/2 + jx + c, say). Such a function has a

unique critical point xc (xc = −j/a), and since q(x) is quadratic and q′(xc) = 0 one can

write q(x) as

q(x) = q(xc) +
1
2(x− xc)

2q′′(xc) . (4.34)

Thus the integral is
∫ +∞

−∞

dx e (i/~)q(x) = e (i/~)q(xc)
∫ +∞

−∞

dy e (i/~)q
′′(xc)y

2/2

= e(i/~)q(xc)

√

2πi~

q′′(xc)
(4.35)

This reproduces and generalises (4.32).

It will be more convenient to move the factor
√
2πi~ to the left, so that the result is

1√
2πi~

∫ +∞

−∞

dx e (i/~)q(x) =
1

√

q′′(xc)
e (i/~)q(xc) . (4.36)

We see that a Fresnel integral is determined exactly by the contribution from the critical

point and the quadratic fluctuations around it. Another way of saying this is that, as

we will see, for a Gaussian/Fresnel integral the stationary phase approximation is exact.

Now let us consider the oscillatory integral

I[f ] =
1√
2πi~

∫ +∞

−∞

dx e (i/~)f(x) (4.37)

for a general function f(x). Let xc denote the critical point of f(x) with the smallest

absolute value, and assume that xc is isolated. Then we can expand f(x) around xc as

f(x) = f(xc) +
1
2(x− xc)

2f ′′(xc) +R(x− xc) , (4.38)

where the rest R(x− xc) is at least cubic in (x− xc). Thus the integral is

I[f ] =
1√
2πi~

e (i/~)f(xc)
∫ +∞

−∞

dx e (i/~)[f
′′(xc)(x− xc)

2/2 +R(x− xc)] . (4.39)
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The stationary phase approximation (also known as the saddle point approximation) to

the integral amounts to ignoring the higher than quadratic terms encoded in R(x− xc)

and leads to the approximate result

1√
2πi~

∫ +∞

−∞

dx e (i/~)f(x) ≈ 1
√

f ′′(xc)
e (i/~)f(xc) . (4.40)

To justify this approximation, one needs to show that the contributions due to the

remainder R(x− xc) are indeed subleading in ~ as ~ → 0. We will establish this below.

Another cause for concern may be that, while we have (hand-wavingly) argued that the

dominant contribution to the oscillatory integral should arise from a small neighbour-

hood of the critical point(s), in order to arrive at (4.40) we have taken the integral not

over a small neighbourhood of xc but, quite on the contrary, over (−∞,+∞).

To justify this, consider the contribution to the integral from an interval [a, b] without

critical points. In that interval, one can change the integration variable from x to f(x)

(this would not be allowed if f(x) had a critical point in the interval). Then it is easy

to see (e.g. by an integration by parts) that the integral

∫ b

a
dx e (i/~)f(x) = O(~) . (4.41)

Thus regions without critical points contribute O(~) terms to the integral. On the

other hand, (4.40) shows that, regardless of what the neglected terms do, there are

some contributions to the total integral which are of order O(~1/2). Thus these must

be due to the contributions from (integrals over arbitrarily small neighbourhoods of)

the critical points. As these are dominant relative to the O(~) contributions as ~ → 0,

the difference betwen integrating over such a neighbourhood of the critical point and

integrating over all x is negligible in this limit.

To analyse the contributions due to R(x−xc) and to make the dependence of the various

terms on ~ more transparent, it is convenient to define the fluctuation variable y not as

(x− xc), as was implicitly done in (4.35), but via

x = xc +
√
~y . (4.42)

This has the effect of making the Gaussian part of the integral independent of ~,

(x− xc)
2/2~ = y2/2 . (4.43)

Moreover, since R(x−xc) is at least cubic, (1/~)R(
√
~y) is now a power series in strictly

positive powers of
√
~,

r(y) ≡ (1/~)R(
√
~y) = ~

1/2f (3)(xc)y
3/3! + ~f (4)(xc)y

4/4! + . . . (4.44)
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even (odd) powers of y appearing with integral (half-integral) powers of ~. All in all,

we thus have

1√
2πi~

∫ +∞

−∞

dx e (i/~)f(x) =
1√
2πi

e (i/~)f(xc)
∫ +∞

−∞

dy e i[f
′′(xc)y

2/2 + r(y)] .

(4.45)

To obtain the higher order corrections to the stationary phase approximation, one can

expand exp ir(y). Remembering that only even powers of y in that expansion give a

non-zero contribution to the y-integral, one concludes that this expresses the integral

as a power series in (integral) powers of ~,

1√
2πi~

∫ +∞

−∞

dx e (i/~)f(x) =
1

√

f ′′(xc)
e (i/~)f(xc)(1 + ~(. . .) + ~

2(. . .) + . . .) (4.46)

Alternatively, this series can be expressed in terms of generating functions as

1 + ~(. . .) + ~
2(. . .) + . . . = e ir(−i∂/∂j)e−ij

2/2f ′′(xc)|j=0 . (4.47)

The stationary phase approximation can be used to calculate the integral with reason-

able accuracy for very small ~, ~ → 0. However, the series expansion should not be

expected to converge in general, and the series is only an asymptotic series. If contribu-

tions from all critical points are included, it is under certain conditions possible to obtain

error estimates, but in practice applications of the stationary phase approximation are

usually restricted to (4.40).

4.5 The Semi-Classical Approximation

It is now straightforward to formally apply this stationary phase approximation to

path integrals. The crucial point is that in the path integral formulation of quantum

mechanics the classical limit and the emergence of classical mechanics from quantum

mechanics are extremely transparent: in the limit ~ → 0, the path integral is dominated

by paths that are critical points of the action, i.e. the classical solutions to the equations

of motion. This should be contrasted with the much more cumbersome eikonal or WKB

semi-classical approximation to the Schrödinger equation.

Essentially all the work has already been done in sections 3.5 and 4.6 and we can be

brief about this here. Instead of the function f(x) we have an action S[x], and the

semi-clasical approximation amounts to expanding S[x] around a critical point, i.e. a

classical solution xc(t) of the corresponding Euler-Lagrange equations. This is precisely

the procedure we had already advocated for how to deal with general non-Gaussian

path integrals. We now see that this will lead to an expansion of the path integral in
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powers of ~, the stationary phase approximation to the path integral agreeing with the

harmonic oscillator path integral of section 3.5.

First of all, with

x(t) = xc(t) + δx(t) , (4.48)

we expand the action as

S[x] = S[xc] +

∫ tf

ti

dt
δS

δx(t)
|x(t)=xc(t)δx(t)

+
1

2

∫ tf

ti

dt

∫ tf

ti

dt′
δ2S

δx(t)δx(t′)
|x(t)=xc(t)δx(t)δx(t

′) + . . .

= S[xc] +
1

2

∫ tf

ti

dt

∫ tf

ti

dt′
δ2S

δx(t)δx(t′)
|x(t)=xc(t)δx(t)δx(t

′) + . . . (4.49)

For an action of the standard form

S[x] =
m

2

∫ tf

ti

(ẋ(t)2 − 1

m
V (x(t)) (4.50)

the quadratic term is

1

2

∫ tf

ti

dt

∫ tf

ti

dt′
δ2S

δx(t)δx(t′)
|x(t)=xc(t)δx(t)δx(t

′) =
m

2

∫ tf

ti

(δẋ(t)2 − 1

m
V ′′(xc(t))δx(t)

2)

(4.51)

As already noted in section 3.5, this is the action of a harmonic oscillator with time-

dependent frequency

ω(t)2 =
1

m
V ′′(xc(t)) . (4.52)

Thus the stationary phase or semi-classical approximation to the path integral is (cf.

(3.47))

∫ x(tf )=xf

x(ti)=xi

D[x(t)] e (i/~)S[x(t); tf , ti] ≈
√

m

2πi~(tf − ti)

√

Det[−∂2t ]
Det[−∂2t − ω(t)2]

e (i/~)S[xc] .

(4.53)

This can be evaluated using either the VVPM or the GY method.

The difference between (3.47)) and (4.53) is that in the former case one was dealing

with a quadratic action and the result was exact (i.e. the semi-classical approximation

is exact for the harmonic oscillator), whereas here this is really just the semi-classical

approximation. Note also that xc in (4.53) refers to a classical solution of the full

equations of motion mẍ = −V ′(x) whereas xc in (3.47) is of course a solution of the

harmonic oscillator equation.

If desired, higher order corrections in ~ to the semi-classical result can be calculated, as

in (4.47), by using the generating functional of the quadratic theory.
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4.6 Scattering Theory and the Path Integral

Formal scattering theory can be succinctly described by the evolution operator UI(tf , ti)

in the interaction representation. Thus let the Hamiltonian be (in the simplest case of

two-body potential scattering)

H = H0 + V (4.54)

where H0 is the free-particle Hamiltonian H0 = ~p2/2m. Then UI(tf , ti) is given by

UI(tf , ti) = e(i/~)tfH0 e−(i/~)(tf − ti)H e−(i/~)tiH0 (4.55)

The Møller operators

Ω± = lim
t→∓∞

UI(0, t) (4.56)

act on free particle states |~ka > (plane wave eigenstates of the free Hamiltonian H0)

< ~x|~ka >=
1

(2π)3/2
e i
~ka.~x , (4.57)

~pa = ~~ka, H0|~ka >= Ea|~ka >, to produce the stationary scattering states ψ±
a (~x),

Ω±|~ka >= |ψ±
a > . (4.58)

The S-matrix elements Sab are the transition amplitudes among the asymptotic in and

out scattering states |ψ±
a >,

Sab =< ψ−
a |ψ+

b > , (4.59)

and therefore they are the matrix elements

Sab =< ~ka|S|~kb > (4.60)

of the scattering operator

S = Ω†
−Ω+ = lim

tf,i→±∞
UI(tf , ti) (4.61)

between free particle states.

Such matrix elements can readily be expressed in terms of the path integral. First of

all, we have

Sab = lim
tf,i→±∞

< ~ka|e (i/~)tfH0 e−(i/~)(tf − ti)H e−(i/~)tiH0 |~kb >

= lim
tf,i→±∞

e (i/~)(tfEa − tiEb) < ~ka|e−(i/~)(tf − ti)H |~kb > . (4.62)
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To pass from the momentum space matrix elements of the evolution operator for H to

the kernel (the position space matrix elements), we perform a double Fourier transform

(this is a special case of (2.61)),

< ~ka|e−(i/~)(tf − ti)H |~kb >=
1

(2π)3

∫

d~xa

∫

d~xbe
i(~kb.~xb − ~ka.~xa)K(~xa, ~xb, tf − ti) .

(4.63)

Representing, in the usual way, the kernel by the path integral, we conclude that the

S-matrix elements Sab are given by a Fourier transform of the path integral. Either per-

turbative or semi-classical expansion techniques, as described earlier on in this section,

can now be employed to obtain series expansions for these S-matrix elements.

4.7 Exercises

1. Using the Heisenberg picture operator equations of motion or Ehrenfest’s theorem,

show that for a (possibly time-dependent) harmonic oscillator the time-ordered

2-point function is a Green’s function,

(−∂2t − ω(t)2) < 0|T (x̂(t)x̂(t′))|0 >= i~

m
δ(t− t′) . (4.64)

2. Using the generating functional Z0[j] (4.19), express the 4-point function

< 0|T (x̂(t1)x̂(t2))x̂(t3)x̂(t4))|0 > (4.65)

in terms of sums of products of Green’s functions (2-point functions).

3. Calculate the order ~ correction to the stationary phase approximation of the

integral

1√
2πi~

∫ +∞

−∞

dx e (i/~)f(x) =
1

√

f ′′(xc)
e (i/~)f(xc)(1 + ~(. . .) + . . .) (4.66)

Note that two different terms contribute to the integral at this order.
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A Gaussian and Fresnel Integrals

A.1 Basic 1-dimensional Integrals

The basic Gaussian integral is

I0[α] =

∫ +∞

−∞

dx e−αx
2/2 =

√

2π

α
α ∈ R, α > 0 . (A.1)

This result can for instance be established by the standard trick of squaring the integral

and passing to polar coordinates. The first generalisation we will consider is the integral

I1[α, j] =

∫ +∞

−∞

dx e−αx
2/2 + jx j ∈ R . (A.2)

By completing the square and shifting the integration variable (using translation invari-

ance of the measure) one finds

I1[α, j] =

∫ +∞

−∞

dx e−α(x− j/α)2/2 + j2/2α =

√

2π

α
e j

2/2α . (A.3)

Another proof of this identity is based on the trivial identity

∫ +∞

−∞

dx
d

dx
e−αx2/2 + jx = 0 . (A.4)

Expanding this out, one finds

0 =

∫ +∞

−∞

dx (−αx+ j)e−αx2/2 + jx

= −α ∂

∂j
I1[α, j] + jI1[α, j] . (A.5)

This differential equation for I1[α, j],

∂

∂j
I1[α, j] = (j/α)I1[α, j] , (A.6)

called a Schwinger-Dyson Equation in the quantum field theory context, is evidently

solved by

I1[α, j] = ce j
2/2α , (A.7)

and the normalisation (initial) condition I1[α, 0] = I0[α] then leads to

I1[α, j] = I0[α]e
j2/2α , (A.8)

which agrees with the result (A.3).
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The other generalisation that will interest us is the oscillatory Fresnel integral

J0[a] = I0[−ia] =
∫ +∞

−∞

dx e iax
2/2 . (A.9)

It can be obtained by noting that the basic Gaussian integral is well defined for α ∈ C

with Re(α) > 0, and that it continues to be well defined for Re(α) → 0 provided that

Im(α) 6= 0. It follows that

J0[a] =

√

2πi

a
=

√

2π

a
e iπ/4 . (A.10)

A useful way to remember this result is to relate it to the integral I0 with a phase

depending on the sign of a,

J0[a] = I0[|a|]e isign(a)π/4 . (A.11)

By the same reasoning, for the integral

J1[a, j] = I1[−ia, ij] =
∫ +∞

−∞

dx e iax
2/2 + ijx (A.12)

one finds

J1[a, j] =

√

2πi

a
e−ij2/2a . (A.13)

For an alternative proof of this identity see section 4.5.

As an application, we consider an integral of the kind we encountered in sections 1 and

2, namely

K =
1

2π~

∫ +∞

−∞

dp e (i/~)[py − ǫp2/2m] . (A.14)

By completing the square, shifting the integration variable and using the Fresnel integral

formula, or directly upon using the above result for J1[a, j], one finds

K =
1

2π~

√

2π~m

iǫ
e (i/~)ǫ(m/2)(y/ǫ)

2

=

√

m

2πi~ǫ
e

i
~

m
2

y2

ǫ . (A.15)

A.2 Related Integrals

By symmetry considerations, one has

∫ +∞

−∞

dx e−αx2/2x2m+1 = 0 . (A.16)
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The integrals of even powers x2m can be calculated by relating them to the integrals I0

or I1. For example, one has

∫ +∞

−∞

dx e−αx2/2x2m = (−2)m
∂m

∂αm

∫ +∞

−∞

dx e−αx2/2

= (−2)m
∂m

∂αm
I0[α] . (A.17)

This can be evaluated to give

∫ +∞

−∞

dx e−αx
2/2x2m = (−2)m

√
2π

∂m

∂αm
α−1/2

=
√
2π(2m− 1)!!α−(2m+1)/2 . (A.18)

However, this formula does not generalise in any useful way to path integrals. An

alternative (and very slick) way to obtain the result (A.18) is to introduce, for the

integrals

Zℓ =

∫ +∞

−∞

dx e−αx2/2xℓ , (A.19)

the generating function

Z(j) =
∞
∑

ℓ=0

jℓZℓ . (A.20)

By evaluating the sum, we see that

Z(j) =

∫ +∞

−∞

dx e−αx2/2 + jx = I1[α, j] =

√

2π

α
e j

2/2α . (A.21)

Hence, comparing powers of j, one deduces Z2m+1 = 0 and

Z2m =

√

2π

α
(2α)−m (2m)!

m!
. (A.22)

In view of

(2m)! = 2mm!(2m− 1)!! , (A.23)

this agrees precisely with (A.18).

Alternatively, instead of comparing powers, one can differentiate with respect to j, so

that the result can be written as

∫ +∞

−∞

dx e−αx
2/2xℓ =

[

∂ℓ

∂jℓ

∫ +∞

−∞

dx e−αx
2/2 + jx

]

j=0

=

[

∂ℓ

∂jℓ
I1[α, j]

]

j=0

. (A.24)
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More generally, one has

∫ +∞

−∞

dx e−αx2/2F (x) =
[

F

(

∂

∂j

)

I1[α, j]

]

j=0

(A.25)

and
∫ +∞

−∞

dx e−αx2/2 + F (x) =

[

e
F
(

∂
∂j

)

I1[α, j]

]

j=0

(A.26)

for any function F (x). This justifies the name generating function and explains why

the central object of interest for integrals with Gaussian weight is the integral Z(j) =

I1[α, j].

A.3 Gaussian Integrals and Determinants

The simplest 2-dimensional Gaussian integral is

∫ +∞

−∞

dx

∫ +∞

−∞

dy e−αx2/2− βy2/2 =
2π√
αβ

. (A.27)

This generalises to

∫ +∞

−∞

dx

∫ +∞

−∞

dy e−(αx2 + βy2 + 2γxy)/2 =
2π

√

αβ − γ2
, (A.28)

as can be seen by completing the square.

In terms of the matrix

A =

(

α γ

γ β

)

(A.29)

the exponent of the integrand can be written as Aabx
axb with xa = (x, y) and the above

identity reads

∫ +∞

−∞

d2x e−Aabx
axb/2 =

(
√
2π)2√
detA

=

(

det
A

2π

)−1/2

. (A.30)

This way of writing this result generalises to d-dimensional integrals, d ≥ 2. Let A be

a symmetric, positive real (d× d)-matrix. Then one has

∫ +∞

−∞

ddx e−Aabx
axb/2 =

(

det
A

2π

)−1/2

. (A.31)

Likewise, for the oscillatory version of this integral one has

∫ +∞

−∞

ddx e iAabx
axb/2 =

(

det
A

2πi

)−1/2

. (A.32)
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Thus the task of calculating Gaussian integrals and their various relatives and descen-

dants has been reduced to the purely algebraic task of calculating determinants of

matrices.

The proof of the fundamental identities (A.31,A.32) is remarkably simple and will be

left as an exercise. The strategy is to first prove them for A diagonal (this is trivial) and

to then use the fact that any real symmetric A can be diagonalised by an orthogonal

transformation, combined with the rotation invariance of the measure ddx.
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B Infinite Product Identities

A useful identity, ubiquitous in determinant and index calculations, is the following

infinite product representation for (sinx)/x,

sinx

x
=

∞
∏

n=1

(

1− x2

n2π2

)

(B.1)

The validity of this formula is plausible as the right hand side has exactly the same zeros

and identical behaviour as x→ 0 as the left hand side. It can be proved rigorously in a

variety of ways. The easiest (and closest in spirit to the rough argument in the previous

sentence) is to extend (sinx)/x to a holomorphic function (sin z)/z in the complex plane

and factorise using the Mittag-Leffler pole expansion - see e.g. section 7 of

G. Arfken and H. Weber, Mathematical Methods for Physicists, Elsevier (2005).

The single identity above can be used to generate an infinite number of other identities,

in the spirit of Euler. The first non-trivial one of these results from comparing the

quadratic term in the expansion of the left hand side,

sinx

x
=
x− x3/6 + . . .

x
= 1− x2

6
+ . . . (B.2)

with the quadratic term arising from the right hand side,

∞
∏

n=1

(

1− x2

n2π2

)

= 1−
∞
∑

n=1

x2

n2π2
+ . . . (B.3)

which provides a cute proof of the famous identity

∞
∑

n=1

1

n2
=
π2

6
. (B.4)

Similarly, and this will turn out to be useful in Appendix D below, we can derive the

at least equally charming famous Wallis product formula for π, namely

π

2
=

22 42 62 . . .

12 32 52 72 . . .
, (B.5)

by setting x = π/2 in (B.1),

2

π
=

∞
∏

n=1

(

1− 1

4n2

)

=
∞
∏

n=1

(

4n2 − 1

4n2

)

⇒ π

2
=

∞
∏

n=1

(2n)2

(2n − 1)(2n + 1)

(B.6)
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which gives the desired result (each odd number > 1 appearing twice in the denomina-

tor).

There are a host of other occasionally useful infinite product identities (none of which,

however, will be used in these notes). For example, closely related infinite product

representations of other trigonometric and hyperbolic functions are

sinhx

x
=

∞
∏

n=1

(

1 +
x2

n2π2

)

(B.7)

cosx =

∞
∏

n=1

(

1− x2

(n− 1/2)2π2

)

(B.8)

coshx =

∞
∏

n=1

(

1 +
x2

(n− 1/2)2π2

)

(B.9)

There is also the more mysterious identity

sinx

x
=

∞
∏

n=1

cos
( x

2n

)

. (B.10)

As another example, Euler’s identity for the Riemann ζ-function

ζ(s) =
∞
∑

n=1

1

ns
(B.11)

is

ζ(s) =
∞
∏

n=1

1

1− p−s
n

, (B.12)

where pn = 2, 3, 7, 11, . . . is the sequence of prime numbers. This identity provides the

cornerstone of the relation between number theory and complex analysis.

C Equivalence of the VVPM and GY Formulae for the Fluctua-

tion Determinant

The article of Kleinert and Chervyakov cited in section 3.5 contains a nice proof of the

classical identity (3.63) expressing the equivalence of the VVPM (3.49) and Gelfand-

Yaglom (3.51) results for the ratio of fluctuation determinants.

Consider the classical solution xc(t) with xc(tf,i) = xf,i. This solution can equally well

be regarded as a function of the initial position xi and velocity ẋi,

xc = xc(t, xi, ẋi) . (C.1)
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Writing this as a linear combination of two linearly independent solutions f1(t) and

f2(t) of the oscillator equation,

xc(t, xi, ẋi) = xif1(t) + ẋif2(t) (C.2)

and imposing the conditions xc(ti) = xi and ẋc(ti) = ẋi, one finds

xc(ti) = xi ⇒ f1(ti) = 1 f2(ti) = 0

ẋc(ti) = ẋi ⇒ ḟ1(ti) = 0 ḟ2(ti) = 1 . (C.3)

This shows that f2(t) = Fω(t) is the GY solution,

Fω(t) =
∂xc(t, xi, ẋi)

∂ẋi
. (C.4)

At this point, one can either use directly the Hamilton-Jacobi relation

∂S[xc]

∂xi
= −pi = −mẋi , (C.5)

to deduce (3.63). Or one can evaluate explicitly the classical action in terms of Fω(t)

and f1(t) ≡ Gω(t) (the “dual” GY solution, which plays a role analogous to the GY

solution when one considers periodic or anti-periodic boundary conditions instead of

zero boundary conditions). Thus one has

xc(t) = xiGω(t) + ẋiFω(t) . (C.6)

and therefore, in particular,

xf = xiGω(tf ) + ẋiFω(tf )

ẋf = xiĠω(tf ) + ẋiḞω(tf ) . (C.7)

Since only boundary terms contribute to the classical action, it is simply given by (3.48)

S[xc] =
m

2
[xf ẋc(tf )− xiẋc(ti)] . (C.8)

Using (C.7) to eliminate ẋi,f in favour of xi,f , and using the fact that the Wronskian of

Fω(t) and Gω(t) is t-independent,

(FωĠω − ḞωGω)(ti) = −1 = (FωĠω − ḞωGω)(tf ) , (C.9)

one finds that the classical action, as a function of xi and xf , is

S[xc] =
m

2Fω(tf )
[Ḟω(tf )x

2
f +Gω(tf )x

2
i − 2xixf ] . (C.10)

It follows that
∂2S[xc]

∂xi∂xf
= − m

Fω(tf )
, (C.11)

as we set out to show.
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D Poor Man’s Proof of some ζ-function Identities

The purpose of this appendix is to give a heuristic proof of the ζ-function identities

ζ(0) = −1
2 (

∑∞
n=1 1 )

ζ(−1) = − 1
12 (

∑∞
n=1 n )

ζ(−2) = 0 (
∑∞

n=1 n
2 )

(D.1)

where

ζ(s) =

∞
∑

n=1

n−s . (D.2)

Let us, for reasons that will become apparent below, start with the sum

Z(ǫ) =

∞
∑

n=1

e−ǫn (D.3)

which we consider as the regularisation of
∑∞

n=1 1 (to which it reduces as ǫ→ 0). This

sum is elementary,

Z(ǫ) =
1

eǫ − 1
(D.4)

The derivatives of Z(ǫ) are

Z ′(ǫ) = −
∞
∑

n=1

ne−ǫn

Z ′′(ǫ) =

∞
∑

n=1

n2e−ǫn , (D.5)

etc. Therefore, just as we formally have Z(0) =
∑

n 1, we have

∞
∑

n=1

n = −Z ′(0) ,

∞
∑

n=1

n2 = Z ′′(0) , (D.6)

and, in general,
∞
∑

n=1

np = (−1)pZ(p)(0) . (D.7)

Now let us expand Z(ǫ) for small ǫ,

Z(ǫ) =
1

ǫ
− 1

2
+

ǫ

12
+O(ǫ3) (D.8)

(in particular, there is no ǫ2 term). Therefore we also have

Z ′(ǫ) = − 1

ǫ2
+

1

12
+O(ǫ2)

Z ′′(ǫ) =
2

ǫ3
+O(ǫ) . (D.9)
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Evidently, in each case the first term is singular as ǫ → 0. Now comes the trickery.

Assume that, for present purposes, the regularisation (analytic continuation) of the

Riemann ζ-function amounts to nothing more and nothing less than that this term is

absent. Then we find

(
∞
∑

n=1

1)reg = Z(0)reg = −1

2

(

∞
∑

n=1

n)reg = −Z ′(0)reg = − 1

12

(
∞
∑

n=1

n2)reg = Z ′′(0)reg = 0 , (D.10)

which agrees precisely with the values of ζ(s) for s = 0,−1,−2 respectively, and provides

a heuristic proof of the identities (3.76).

More generally, using the fact that the Bernoulli numbers are defined as the coefficients

Bk in the power series expansion of (D.4),

Z(ǫ) =
∑

k≥0

Bk

k!
ǫk−1 , (D.11)

by differentiating p times and setting ǫ = 0 (discarding the singular piece arising from

the term with k = 0), one obtains the famous result

(

∞
∑

n=1

np)reg = (−1)pZ(p)(0) = (−1)p
Bp+1

p+ 1
(D.12)

(which can be established rigourosly as the analytic continuation of the ζ-function ζ(s)

evaluated at the non-positive integer value s = −p). Since the first non-vanishing

Bernoulli numbers are

B0 B1 B2 B4 B6 B8 B10

1 −1
2

1
6 − 1

30
1
42 − 1

60
5
66

(D.13)

this reproduces and generalises the above special cases.

Using the result for ζ(0), as well as the Wallis product formula (B.5) derived above, we

can now also give a proof of the identity (3.77)

ζ ′(0) = −1
2 log 2π . (D.14)

Since

ζ ′(s) = −
∞
∑

n=1

n−s log n , (D.15)
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ζ ′(0) can be thought of as the regularisation of −∑ log n, so that (D.14) can be read as

(
∑

n

log n)reg =
1
2 log 2π ⇔

(

∞
∏

n=1

n2

)

reg

= 2π . (D.16)

To establish (D.14), we proceed formally as follows.7 Taking the square root and the

logarithm of the Wallis formula (B.5), we obtain

log

√

2

π
= log

(

1

2

3

4

5

6
. . .

)

= log 1− log 2+ log 3− log 4± . . . =
∞
∑

n=1

(−1)n+1 log n (D.17)

What we are interested in is the sum without the signs, which we write as

(
∞
∑

n=1

log n)reg =
∞
∑

n=1

(−1)n+1 log n+ 2(
∞
∑

n=1

log 2n)reg

=

∞
∑

n=1

(−1)n+1 log n+ 2(

∞
∑

n=1

log 2)reg + 2(

∞
∑

n=1

log n)reg

= log

√

2

π
− log 2 + 2(

∞
∑

n=1

log n)reg ,

(D.18)

where we used (
∑

n 1)reg = −1/2. This implies

ζ ′(0) = −(
∞
∑

n=1

log n)reg =
1

2

(

log
2

π
− log 4

)

= −1

2
log 2π , (D.19)

as claimed.

As an aside: an elegant way to obtain the analytic continuation of the Riemann ζ-

function is via the (assumed known) analytic continuation of the Euler Gamma-function

Γ(s) =

∫ ∞

0
dt e−tts−1 , (D.20)

which generalises the factorial,

Γ(n+ 1) = n! n ∈ N . (D.21)

The first step is to establish the identity

Γ(s)ζ(s) =

∫ ∞

0
dt

ts−1

et − 1
, (D.22)

which follows from changing variables t→ nt in (D.20),

Γ(s) = ns
∫ ∞

0
dt e−ntts−1 , (D.23)

7See e.g. C. Belardinelli, arXiv:1908.05226 or https://en.wikipedia.org/wiki/Wallis product.
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and

Γ(s)ζ(s) =

∞
∑

n=1

∫ ∞

0
dt e−ntts−1 =

∫ ∞

0
dt

ts−1

et − 1
. (D.24)

From this, the expansion of (et − 1)−1, and the analytic continuation of the Gamma-

function, one can then obtain the analytic continuation of the ζ-function.
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